Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Acta Biomater ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222705

RESUMEN

Islet transplantation has been developed as an effective cell therapy strategy to treat the progressive life-threatening disease Type 1 diabetes (T1DM). To mimic the natural islets and achieve immune isolation, hydrogel encapsulation of multiple islet cell types is the current endeavor. Here, we present a microfiber loading with pancreatic α and ß cells by microfluidic spinning for diabetes treatment. Benefiting from microfluidic technology, the cells could be controllably and continuously loaded in the alginate and methacrylated hyaluronic acid (Alg-HAMA) microfiber and maintained their high bioactivity. The resultant microfiber could then hold the capacity of dual-mode glucose responsiveness attributed to the glucagon and insulin secreted by the encapsulated pancreatic α and ß cells. After transplantation into the brown adipose tissue (BAT), these cell-laden microfibers showed successful blood glucose control in rodents and avoided the occurrence of hypoglycemia. These results conceived that the multicellular microfibers are expected to provide new insight into artificial islet preparation, diabetes treatment, and regenerative medicine as well as tissue engineering. STATEMENT OF SIGNIFICANCE.

2.
Environ Toxicol Chem ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291885

RESUMEN

Microplastics have been found in freshwater systems, and in turn have been detected in freshwater bivalves. However, there is limited research that defines the toxicity of bicroplastics to native freshwater bivalves that have long been imperiled in North America. Our objective was to determine whether a suite of pristine microplastics has an adverse effect on two early life stages of unionid freshwater mussels. Glochidia of Lampsilis fasciola (a Canadian species at risk) and Lampsilis siliquoidea (widespread across Canada) were individually exposed to spheres of polystyrene (6 and 90 µm), polyethylene (28, 90, and 1000 µm), and cellulose acetate (1000 µm), as well as fibers of polyethylene terephthalate (60 µm). After 24 h, there was no significant decrease in glochidia viability in either species. Juvenile L. siliquoidea mussels were also exposed to spheres of polystyrene (6 and 90 µm) and polyethylene (28 µm), and fibers of polyethylene terephthalate (60 µm) in individual 28-day subchronic tests followed by a 7-day depuration period. Burial was assessed weekly, and ingestion of each microplastic was compared in nondepurated and depurated mussels. There was no sustained effect on juvenile burial with any microplastic tested. Ingestion of microplastics was concentration dependent, and depuration occurred for all particles and size ranges tested. The results suggest that pristine microplastics were not acutely toxic to the early life stages of these freshwater mussels, but that the energetic costs associated with particle uptake and depuration, which were not measured in our study, may have an impact on fitness that warrants further investigation. In addition, testing with other shapes and polymers of microplastics typically detected in the environment is recommended. Environ Toxicol Chem 2024;00:1-12. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Biosens Bioelectron ; 267: 116772, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276440

RESUMEN

Squamous cell carcinoma antigen (SCCA) is one of the most commonly detected cancer biomarkers for a variety of cancers. In this paper, a microfiber ring laser biosensor with a graphene oxide linking layer for SCCA detection was proposed and experimentally demonstrated. SCCA antibody immobilized on graphene oxide surface binds specifically to SCCA, and induces refractive index variation over the surface of the microfiber biosensor, which leads to a wavelength shift of the microfiber ring laser biosensor. The experimental results show that the proposed laser biosensor can detect SCCA with concentrations from 0.01 to 50 ng/mL, and the calculated detection limit can be as low as 1.3 pg/mL. Additionally, the label-free quantitative detection of SCCA using the proposed microfiber biosensor was verified experimentally according to the corresponding regression equation, and the results agree well with clinical examination detection. This constructed microfiber biosensor may have promising practical applications in analytical detection, medical diagnostics, etc.

4.
Environ Pollut ; : 124966, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284407

RESUMEN

Environmental science studies from the past decade have emphasized that microplastics in aquatic environments are mostly caused by domestic laundering of synthetic textiles. Although many studies have explored the microfiber release behavior of fabrics washed in laundry, attempts to witness microfiber release from sewing threads, which are an inevitable part of any finished garment, are meager. With this research gap, this study attempted to analyze the potential of sewing threads to release microfibers during washing and the extent to which they can contribute to the overall microfiber release during domestic laundering. The study's findings revealed an average release of 2.65 ± 0.70 (n=33) microfibers/m from the sewing thread sewn on the fabric during laundering. The sewing process was noted to cause damage to the sewing thread, which led to a comparatively higher microfiber release (∼114%) compared with the sewing threads that were washed before sewing. Among the selected sewing threads, higher microfiber emissions were reported with spun threads, followed by twistless filaments, and twisted filament threads. The results showed that coarser sewing threads with higher Tex values released more microfibers than finer Tex threads. Compared to the 20Tex spun thread, the 80Tex spun thread showed a 22-150% increase in microfiber release. In the case of filament sewing thread, a similar impact was noted, whereas the role of twist was found to be efficient in reducing microfiber emission. Compared to the untwisted filaments, the ply twisted filaments exhibited approximately 76% lower microfiber emissions. The findings of this study showed that sewing thread contributed approximately 1.09% of the total microfiber emissions from apparel during laundry.

5.
Mar Pollut Bull ; 208: 116937, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260146

RESUMEN

Microplastics (MPs) contamination in marine organisms is a significant threat to seafood consumers worldwide. This study is the first to investigate the abundance of MPs in the commercial bivalves from six sites along Thailand's coastline, the daily exposure of bivalve consumers to MPs, and potential associated health risks. The microplastic occurrence varied from 69 % to 93 % in four bivalve species while the average abundance of MPs was 1.87 ± 0.86 items/individual or 0.46 ± 0.43 items/g ww. Benthic bivalves (cockles and clams) contained more MPs than their pelagic counterparts (mussels and oysters). Small blue microfibers (<500 µm) were the most abundant. The most common polymers were natural based polymers (cotton and rayon) and polyethylene terephthalate (PET). The daily microplastic exposure for consumers was 0.52 items/person. Although the risk of microplastic contamination is low, we recommend investigation into the transfer of MPs within the food web, notably as it may pose significant human health concerns.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39276071

RESUMEN

A three-dimensional (3D) hierarchical microfiber bundle-based scaffold integrated with silver nanowires (AgNWs) and porous polyurethane (PU) was designed for the Joule heater via a facile dip-coating method. The interconnected micrometer-sized voids and unique hierarchical structure benefit uniform AgNWs anchored and the formation of a high-efficiency 3D conductive network. As expected, this composite exhibits a superior electrical conductivity of 1586.4 S/m and the best electrothermal conversion performance of 118.6 °C at 2.0 V compared to reported wearable Joule heaters to date. Moreover, the durable microfiber bundle-PU network provides strong mechanical properties, allowing for the stable and durable electrothermal performance of such a composite to resist twisting, bending, abrasion, and washing. Application studies show that this kind of Joule heater is suitable for a wide range of applications, such as seat heating, a heating jacket, personal thermal management, etc.

7.
Environ Sci Technol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255065

RESUMEN

The extensive use of single-use or disposable face masks has raised environmental concerns related to microfiber contamination. In contrast, research on the potential release and ecological impact of microfibers from washable masks (WMs), suggested as an eco-friendly alternative, is currently lacking. Here, we comprehensively investigated the release of microfibers from disposable and WMs of different types in simulated aquatic environments and real-life scenarios, including shaking, disinfection, hand washing, and machine washing. Using a combination of wide-field fluorescence microscopy, He-ion microscopy, and confocal µ-Raman spectroscopy, we revealed that disposable masks (DMs) released microfibers ranging from 18 to 3042 microfiber/piece, whereas WMs released 6.1 × 104-6.7 × 106 microfibers/piece depending on the simulated conditions above. Another noteworthy finding was the observed negative correlation between microfiber release and the proportion of reinforcement (embossing) on the DM surfaces. Microfibers from tested DMs primarily comprised polypropylene (PP), while WMs predominantly released poly(ethylene terephthalate) (PET) and cellulose microfibers. Furthermore, acute toxicological analyses unveiled that PP microfibers (0.01-50 mg/L) from DMs impacted zebrafish larval swimming behavior, while PET microfibers from WMs delayed early-stage zebrafish hatching. This study offers new insights into the source of microfiber contamination and raises concerns about the environmental implications linked to the use of washable face masks.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39185940

RESUMEN

Microfibers are thread-like structures shorter than 5 mm and have natural, semisynthetic, or synthetic origins. These micropollutants are ubiquitous and are emerging in the environment, living organisms, and food sources. Textile laundering is a prominent source of microfibers, but limited research has been conducted on microfiber pollution from domestic washing machines in emerging economies such as India, where consumption and production rates are exorbitantly high. This study aimed to assess the abundance and size distribution of microfibers from the effluent of a semiautomatic domestic washing machine using three categories of "not-new" textiles: cotton, blended, and synthetic under "with" and "without" detergent conditions. Although most Indians still rely on hand washing, this study focused on washing machines due to their increasing use in India driven by improving socioeconomic factors. This study also developed annual emission estimation and forecasting models for India to understand pollution trends. The results revealed that microfibers were highly abundant in washing machine effluent, with a mean abundance of cotton, blended, and synthetic in "with detergent" conditions of 6476.67, 3766.67, and 8645/L, respectively, whereas in "without detergent," it was lower. All identified microfibers were divided into five size classes. The study also found that powdered detergent increased the abundance and emission of tiny fibers. The overall annual emissions estimate was 1.23 × 1011 microfibers, with cotton, synthetic, and blended categories accounting for 2.11 × 1010, 1.40 × 1010, and 6.15 × 109 microfibers, respectively. Time-series-based future estimates (autoregressive integrated moving average [ARIMA] and error-trend-seasonality [ETS]) showed an alarming increase in microfiber emissions, with forecasted annual emission reaching 1.90 × 1011 by 2030. Synthetic and cotton textiles are the most significant contributors to microfiber pollution. This study emphasized the urgent need to address the issue of microfiber pollution caused by washing machine laundering in developing countries, such as India, where sociodemographic factors intensify the problem. Integr Environ Assess Manag 2024;00:1-12. © 2024 SETAC.

9.
Sci Total Environ ; 951: 175361, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117209

RESUMEN

The prevalence of microplastics (MPs, <5 mm) in natural environments presents a formidable global environmental threat MPs can be found from the Arctic to Antarctica, including glaciers. Despite their widespread distribution, studies on MP accumulation in apex predators inhabiting Polar Regions remain limited. The objective of this study was to conduct a comprehensive examination, for the first time, of MP bioaccumulation in various organs and tissue of Adélie penguins. This investigation comprehends the gastrointestinal tract (GIT), scat, internal organ (lung, trachea, spleen, and liver) and tissue (muscle) samples collected from Svenner Island, Antarctica during the 39th Indian expedition to Antarctica in 2019-2020. Our analyses revealed the presence of 34 MPs across the GIT, scat, lung, and trachea samples, with no MPs detected in muscle, spleen, or liver tissues. Blue-colored microfibers (>50 %) and MPs smaller than 1 mm (38 %) in size were prominently observed. Polymer characterization utilizing µ-FTIR spectroscopy identified low-density polyethylene (LDPE) (~63 %) as the predominant polymer type. The accumulation of MP fibers in the gastrointestinal tract and scat of Adélie penguins may originate from marine ambient media and prey organisms. Furthermore, the presence of LDPE fibers in the trachea and lungs likely occurred through inhalation and subsequent deposition of MPs originating from both local and long-range airborne sources. The identification of fibers ranging between 20 and 100 µm within the trachea suggests a plausible chance of cellular deposition of MPs. Overall our findings provide valuable insights into the organ-specific accumulation of MPs in apex predators. Adélie penguins emerge as promising environmental bio-monitoring species, offering insights into the potential trophic transfer of MPs within frigid environments.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Spheniscidae , Animales , Spheniscidae/metabolismo , Regiones Antárticas , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Islas , Bioacumulación
10.
Int J Biol Macromol ; 277(Pt 3): 134294, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102925

RESUMEN

Despite the significant properties of fossil plastics, the current unsustainable methods employed in production, usage and disposal present a grave threat to both energy and environment. The development of degradable biomass materials as substitutes for fossil plastics can effectively address the energy-environment paradox at the source. Here, we prepared novel micro-nano multiscale composite films through assembling and crosslinking nanocellulose with coniferous wood pulp microfibers. The composite film combines the advantages of microfibers and nanocellulose, achieving a maximum transmittance of 91 %, foldability, excellent mechanical properties (tensile strength: 51.3 MPa, elongation at break: 4 %, young's modulus: 3.4 GPa), high thermal stability and complete degradation within 40 days. The composite film exhibits mechanochemical self-healing and retains properties even after fracture. Such exceptional performance fully meets the requirements for substituting petroleum plastics. By incorporating CaAlSiN3:Eu2+ into the composite film, it enables dual emission of red and blue light, thereby being able to promote plant growth and presenting potential as a novel sustainable alternative for agricultural films. By assembling microfiber and nanocellulose, such novel strategy is presented for the fabrication of high-quality biomass materials, thereby offering a promising avenue towards environment-friendly resource-sustainable new materials.


Asunto(s)
Celulosa , Nanofibras , Madera , Nanofibras/química , Celulosa/química , Madera/química , Resistencia a la Tracción , Biomasa
11.
Carbohydr Polym ; 342: 122272, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048184

RESUMEN

The complexity in structure and function of the nervous system, as well as its slow rate of regeneration, makes it more difficult to treat it compared to other tissues. Neural tissue engineering aims to create an appropriate environment for nerve cell proliferation and differentiation. Fibrous scaffolds with suitable morphology and topography and better mimicry of the extracellular matrix have been promising for the alignment and migration of neural cells. On this premise, to improve the properties of the scaffold, we combined montmorillonite (MMT) with chitosan (CS) polymer and created microfibers with variable diameters and varied concentrations of MMT using microfluidic technology and tested its suitability for the rat pheochromocytoma cell line (PC12). According to the findings, CS/MMT 0.1 % compared to CS/MMT 0 % microfibers showed a 201 MPa increase in Young's modulus, a 68 mS/m increase in conductivity, and a 1.4-fold increase in output voltage. Analysis of cell mitochondrial activity verified the non-toxicity, resulting in good cell morphology with orientation along the microfiber. Overall, the results of this project showed that with a low concentration of MMT, the properties of microfibers can be significantly improved and a suitable scaffold can be designed for neural tissue engineering.


Asunto(s)
Bentonita , Quitosano , Neuronas , Ingeniería de Tejidos , Andamios del Tejido , Quitosano/química , Animales , Células PC12 , Ingeniería de Tejidos/métodos , Ratas , Bentonita/química , Andamios del Tejido/química , Neuronas/efectos de los fármacos , Neuronas/citología , Proliferación Celular/efectos de los fármacos , Microfluídica/métodos , Diferenciación Celular/efectos de los fármacos , Módulo de Elasticidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos
12.
Polymers (Basel) ; 16(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065410

RESUMEN

Electroactive microfiber-based scaffolds aid neural tissue repair. Carbon microfibers (CMFs) coated with the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)] (PEDOT:PSS-co-MA) provide efficient support and guidance to regrowing axons across spinal cord lesions in rodents and pigs. We investigated the electrical and structural performance of PEDOT:PSS-co-MA-coated carbon MFs (PCMFs) for long-term, biphasic electrical stimulation (ES). Chronopotentiometry and electrochemical impedance spectroscopy (EIS) allowed the characterization of charge transfer in PCMFs during ES in vitro, and morphological changes were assessed by scanning electron microscopy (SEM). PCMFs that were 4 mm long withstood two-million-biphasic pulses without reaching cytotoxic voltages, with a 6 mm length producing optimal results. Although EIS and SEM unveiled some polymer deterioration in the 6 mm PCMFs, no significant changes in voltage excursions appeared. For the preliminary testing of the electrical performance of PCMFs in vivo, we used 12 mm long, 20-microfiber assemblies interconnected by metallic microwires. PCMFs-assemblies were implanted in two spinal cord-injured pigs and submitted to ES for 10 days. A cobalt-alloy interconnected assembly showed safe voltages for about 1.5 million-pulses and was electrically functional at 1-month post-implantation, suggesting its suitability for sub-chronic ES, as likely required for spinal cord repair. However, improving polymer adhesion to the carbon substrate is still needed to use PCMFs for prolonged ES.

13.
Acta Biomater ; 185: 161-172, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972624

RESUMEN

The extracellular matrix (ECM) of cancer tissues is rich in dense collagen, contributing to the stiffening of these tissues. Increased stiffness has been reported to promote cancer cell proliferation, invasion, metastasis, and prevent drug delivery. Replicating the structure and mechanical properties of cancer tissue in vitro is essential for developing cancer treatment drugs that target these properties. In this study, we recreated specific characteristics of cancer tissue, such as collagen density and high elastic modulus, using a colorectal cancer cell line as a model. Using our original material, collagen microfibers (CMFs), and a constructed three-dimensional (3D) cancer-stromal tissue model, we successfully reproduced an ECM highly similar to in vivo conditions. Furthermore, our research demonstrated that cancer stem cell markers expressed in the 3D cancer-stromal tissue model more closely mimic in vivo conditions than traditional two-dimensional cell cultures. We also found that CMFs might affect an impact on how cancer cells express these markers. Our 3D CMF-based model holds promise for enhancing our understanding of colorectal cancer and advancing therapeutic approaches. STATEMENT OF SIGNIFICANCE: Reproducing the collagen content and stiffness of cancer tissue is crucial in comprehending the properties of cancer and advancing anticancer drug development. Nonetheless, the use of collagen as a scaffold material has posed challenges due to its poor solubility, hindering the replication of a cancer microenvironment. In this study, we have successfully recreated cancer tissue-specific characteristics such as collagen density, stiffness, and the expression of cancer stem cell markers in three-dimensional (3D) colorectal cancer stromal tissue, utilizing a proprietary material known as collagen microfiber (CMF). CMF proves to be an ideal scaffold material for replicating cancer stromal tissue, and these 3D tissues constructed with CMFs hold promise in contributing to our understanding of cancer and the development of therapeutic drugs.


Asunto(s)
Colágeno , Neoplasias Colorrectales , Células Madre Neoplásicas , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos , Colágeno/química , Células del Estroma/metabolismo , Células del Estroma/patología , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Módulo de Elasticidad , Técnicas de Cultivo Tridimensional de Células
14.
ACS Appl Mater Interfaces ; 16(32): 42986-42994, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083246

RESUMEN

A flexible arc-shaped micro-Fiber Bragg Grating (mFBG) array three-dimensional tactile sensor for fingertip signal detection and human pulse monitoring is presented. It is based on a three mFBGs array which is embedded in an arc-shaped poly (dimethylsiloxane) (PDMS) elastomer, which can effectively discriminate the normal force, left force, and right force by monitoring the reflected intensity variation of the three mFBGs. Different from the traditional FBG sensors, this sensor measures force by detecting changes in light intensity, effectively avoiding the wavelength cross-sensitivity impact of temperature variations on the sensor performance. This design strategy simplifies the sensor structure, reduces the system complexity and signal interrogation cost, and enhances reliability and practicality. Through systematic experiments, we successfully validated the sensor's superior performance, achieving a minimum detection force of 0.01 N and providing robust data support for practical applications. In addition, the sensor has been used to monitor human pulse accurately. The successful fabrication and experimental validation of this sensor lay a foundation for its widespread application in fields such as robot perception and human vital signal detection.


Asunto(s)
Dedos , Tacto , Humanos , Dedos/fisiología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Dispositivos Electrónicos Vestibles , Pulso Arterial , Diseño de Equipo , Dimetilpolisiloxanos/química , Tecnología de Fibra Óptica/instrumentación
15.
Gels ; 10(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38920921

RESUMEN

Silver Carp (SC) is an under-utilized, invasive species in North American river systems. In this study, the synergistic effects of manufactured Microfiber (MMF), Transglutaminase (TG), and chicken skin collagen (CLG)) to enhance surimi gel quality from frozen SC were studied. The gel strength, textural properties, rheological properties, water-holding capacity (WHC), water mobility, microstructure, and protein composition of the gel samples were determined to assess the impact of the additives individually and synergistically. The results suggested that TG had the most pronounced effect on the surimi gel properties by promoting protein cross-linking. Synergistic effects between TG, MMF, and CLG can bring effective gel property enhancement larger than the individual effect of each additive alone. With the established response-surface models, the combination of CLG and MMF can be optimized to produce surimi gels with less TG but comparable in properties to that of the optimal result with high TG usage. The findings of this study provided a technical foundation for making high-quality surimi gel products out of frozen-stored SC with synergistic utilization of additives, which could serve as guidelines for the industrial development of new surimi products.

16.
Food Chem ; 455: 139773, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833856

RESUMEN

A molecularly imprinted polymer (MIP) based microfiber differential demodulation sensing system for sodium benzoate (SB) concentration detection is proposed. The specific binding of MIP on the surface of microfibers with SB can lead to changes in local refractive index (RI). RI change induces a drift in the interference wavelength, which can be monitored by the power difference between two fiber Bragg gratings (FBGs). The sensing system can detect SB in the concentration range of 0.1-50 µg/ml, and interference wavelength and FBG power difference sensitivities are 0.55 nm/(µg/ml) and 2.64 dB/(µg/ml) in the low concentration range of 0.1-1 µg/ml, respectively, with a limit of detection (LOD) of 0.1 µg/ml. This microfiber differential demodulation sensing system is not only simple to fabricate, but also simplifies the demodulation equipment to reduce the cost, which providing a simple, reliable and low-cost technique for the quantitative detection of SB concentration in beverages and flavoured foods.


Asunto(s)
Polímeros Impresos Molecularmente , Benzoato de Sodio , Benzoato de Sodio/análisis , Benzoato de Sodio/química , Polímeros Impresos Molecularmente/química , Fibras Ópticas , Límite de Detección , Contaminación de Alimentos/análisis , Impresión Molecular , Polímeros/química
17.
Toxics ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38922119

RESUMEN

This study investigates the occurrence and characteristics of macroplastic and polymer microparticles in the Urias coastal lagoon's beach sediments, in northwest Mexico. Coastal lagoons, productive and vulnerable ecosystems, are impacted significantly by anthropogenic activities, leadings to their pollution by various contaminants, including plastics. Our research involved sampling sediments from four sites within the lagoon that were influenced by different human activities such as fishing, aquaculture, thermoelectric power plant operations, industrial operations, and domestic wastewater discharge. Our methodology included collecting macroplastics and beach sediment samples, followed by laboratory analyses to identify the plastic debris' size, shape, color, and chemical composition. The results indicated a notable presence of macroplastic items (144), predominantly bags, styrofoam, and caps made of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). The polymer microparticles were mainly fibers, with cotton and polyester as the most common polymers, suggesting a significant contribution from clothing-related waste. The dominant colors of the microparticles were blue and transparent. High densities were observed in areas with slower water exchange. Our findings highlight the urgent need for better waste management practices to mitigate plastic pollution in coastal lagoons, preserving their ecological and economic functions.

18.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930956

RESUMEN

PET/PA6, hollow, segmented-pie, microfiber nonwovens (PET/PA6 HSMNs) play an important role in a microfiber, synthetic leather base. Most of the current PET/PA6 HSMNs generally lack in hygiene performance. Moreover, there is an urgent need for the asymmetric wettability of PET/PA6 HSMNs to ensure the comfort of clothing. In this work, a novel, asymmetrically wettable, PET/PA6 HSMN with a gradient structure is proposed, which can regulate liquid adsorption and directional transport. An MOF-303 was successfully synthesized and loaded onto the PET/PA6 HSMN, which had been pre-treated with gradient hydrolysis under sulfuric acid. The droplet quickly permeated the modified PET/PA6 HSMN, and the droplet disappearance time decreased to 62.40 ms. The liquid strikethrough time of the modified PET/PA6 HSMN reached 5.16 s. The maximum adsorption capacity of the modified PET/PA6 HSMN was 68.161 mg/g, which was improved by 122.83%. In addition, the air permeability of the pre-treated PET/PA6 HSMN increased from 308.70 mm/s to 469.97 mm/s, with the sulfuric acid concentrations increasing from 0% to 20%, and the air permeability of the modified PET/PA6 HSMN decreased gradually from 247.37 mm/s to 161.50 mm/s. Furthermore, the tensile strength of the modified PET/PA6 HSMN treated with sulfuric acid and MOF-303 was also obviously enhanced compared with the PET/PA6 HSMN treated with pure sulfuric acid. This PET/PA6 HSMN, with asymmetric wettability, owing to its high hygiene performance and water transport capabilities, is promising and able to extend the application of a microfiber synthetic leather base for clothing.

19.
Water Res ; 259: 121814, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820730

RESUMEN

Microfibers, a prevalent form of microplastics, undergo diverse environmental interactions resulting in varied morphological changes. These changes can offer insights into their environmental trajectories. Despite its importance, comprehensive studies on microfiber morphology are scarce. This study collected 233 microfibers from the East China Sea and South China Sea. Based on morphological features observed in microscopic images of microfibers, such as curvature, cross-sectional shapes, diameter variations, and crack shapes, we identified a general morphological pattern, classifying the environmental microfibers into three distinct morphological types. Our findings highlight noticeable differences in morphological metrics (e.g., length, diameter, and surface roughness) across three types, especially the diameter. Microfibers of Type I had an average diameter of 19.45 ± 4.93 µm, significantly smaller than Type II (263.00 ± 75.15 µm) and Type III (299.68 ± 85.62 µm). Within the three-dimensional (3D) space fully defined by these quantitative parameters, the clustering results of microfibers are also consistent with the proposed morphology pattern, with each category showing a potential correlation with specific chemical compositions. Type I microfibers correspond to synthetic cellulose, while 94.79 % of Types II and III are composed of polymers. Notably, we also validated the great applicability of the morphology categories to microfibers in diverse environmental compartments, including water and sediments in nearshore and offshore areas. This classification aids in the efficient determination of microfiber sources and the assessment of their ecological risks, marking a significant advancement in microfiber environmental studies.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , China , Contaminantes Químicos del Agua , Océanos y Mares
20.
3D Print Addit Manuf ; 11(2): e638-e654, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689922

RESUMEN

This study proposes a novel and simple fabrication method of magnetic microfibers, employing filament stretching three-dimensional (3D) printing, and demonstrates the capacity of four-dimensional (4D) printing of the proposed magnetic microfibers. A ferromagnetic 3D printing filament is prepared by the mixture of neodymium-iron-boron (NdFeB) and polylactic acid (PLA), and we investigate the characteristics of the ferromagnetic filament by mixing ratio, magnetic properties, mechanical properties, and rheological properties through experiments. By thermal extrusion of the ferromagnetic filament through a 3D printer nozzle, various thicknesses (80-500 µm) and lengths (less than ∼5 cm) of ferromagnetic microfibers are achieved with different printing setups, such as filament extrusion amount and printing speed. The printed ferromagnetic microfibers are magnetized to maintain a permanent magnetic dipole moment, and 4D printing can be achieved by the deformations of the permanently magnetized microfibers under magnetic fields. We observe that the mixing ratio, the thickness, and the length of the magnetized microfibers provide distinct deformation of the microfiber for customization of 4D printings. This study exhibits that the permanently magnetized microfibers have a great potential for smart sensors and actuators. Furthermore, we briefly present an application of our proposed magnetic microfibers for bionic motion actuators with various unique undulating and oscillating motions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA