Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
J Control Release ; 375: 90-104, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233280

RESUMEN

Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.

2.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274999

RESUMEN

Multifunctional thermal regulation materials with good thermal properties, efficient magnetic performance, and satisfactory interface bonding on fabrics are highly desirable for protective fabrics, building winter protection materials, medical thermal regulation materials, and special-environment work clothing. Herein, a new class of magnetic phase-change PW@CaCO3@Fe3O4 microcapsules was successfully produced by controlling the content of magnetic Fe3O4 through a self-assembly method. The microstructure, chemical composition, phase-change behavior, and magnetic properties of the products were sequentially characterized and analyzed. The findings revealed that the obtained microcapsules possessed regular spherical structure with uniform size and excellent thermal properties. Furthermore, PW@CaCO3 with Fe3O4 (i.e., 8% mass fraction) showed the highest thermal regulation and magnetic properties and reached an enthalpy value of 94.25 J·g-1, which is clearly superior to the value of 77.51 J·g-1 for PW@CaCO3 microcapsules. At the same time, the encapsulation efficiency of 38.7% and saturation magnetization of 2.50 emu·g-1 were the best among the four given samples. Therefore, the good paramagnetic feature had a significant synergistic effect on the thermal properties of the PW@CaCO3 microcapsules under study. More importantly, multifunctional fabrics loaded with PW@CaCO3@Fe3O4 microcapsules still showed an enthalpy value of 25.81 J·g-1 after several washes and have the potential to be used widely in the field of temperature control. The thermal regulation fabrics in this study exhibited excellent thermal properties and fastness, which contribute to their practical applications in advancing multifunctional textiles and high-technology modern fabrics.

3.
Food Chem ; 463(Pt 2): 141195, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39276558

RESUMEN

In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.

4.
Carbohydr Polym ; 344: 122531, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218553

RESUMEN

The overuse of pesticides has shown their malpractices. Novel and sustainable formulations have consequently attracted abundant attention but still appear to have drawbacks. Here, we use a maleic anhydride-functionalized cellulose nanocrystals-stabilized Pickering emulsions template to prepare thermo-responsive microcapsules for a pesticide delivery system via radical polymerization with N-isopropyl acrylamide. The microcapsules (MACNCs-g-NIPAM) are characterized by the microscope, SEM, FTIR, XRD, TG-DTG, and DSC techniques. Imidacloprid (IMI) is loaded on MACNCs-g-NIPAM to form smart release systems (IMI@MACNCs-g-NIPAM) with high encapsulation efficiency (~88.49%) and loading capability (~55.02%). The IMI@MACNCs-g-NIPAM present a significant thermo-responsiveness by comparing the release ratios at 35°C and 25°C (76.22% vs 50.78%). It also exhibits advantages in spreadability, retention and flush resistance on the leaf surface compared with the commercial IMI water-dispersible granules (CG). IMI@MACNCs-g-NIPAM also manifest a significant advantage over CG (11.12 mg/L vs 38.90 mg/L for LC50) regarding activity tests of targeted organisms. In addition, IMI@MACNCs-g-NIPAM has shown excellent biocompatibility and low toxicity. All the benefits mentioned above prove the excellent potential of IMI@MACNCs-g-NIPAM as a smart pesticide formulation.


Asunto(s)
Cápsulas , Celulosa , Emulsiones , Anhídridos Maleicos , Nanopartículas , Plaguicidas , Anhídridos Maleicos/química , Celulosa/química , Nanopartículas/química , Plaguicidas/química , Emulsiones/química , Cápsulas/química , Animales , Neonicotinoides/química , Liberación de Fármacos , Temperatura , Nitrocompuestos/química , Ratones , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Acrilamidas
5.
ACS Appl Mater Interfaces ; 16(33): 43951-43960, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39112427

RESUMEN

Microcapsules with a cyclic polyphthalaldehyde (cPPA) shell and oil core were fabricated by an emulsification process. The low ceiling temperature cPPA shell was made phototriggerable by incorporating a photoacid generator (PAG). Photoactivation of the PAG created a strong acid which catalyzed cPPA depolymerization, resulting in the release of the core payload, as quantified by 1H NMR. The high molecular weight cPPA (197 kDa) yielded uniform spherical microcapsules. The core diameter was 24.8 times greater than the cPPA shell thickness (2.4 to 21.6 µm). Nonionic bis(cyclohexylsulfonyl)diazomethane (BCSD) and N-hydroxynaphthalimide triflate (HNT) PAGs were used as the PAG in the microcapsule shells. BCSD required dual stimuli of UV radiation and post-exposure baking at 60 °C to activate cPPA depolymerization while room temperature irradiation of HNT resulted in instantaneous core release. A 300 s UV exposure (365 nm, 10.8 J/cm2) of the cPPA/HNT microcapsules resulted in 66.5 ± 9.4% core release. Faster core release was achieved by replacing cPPA with a phthalaldehyde/propanal copolymer. A 30 s UV exposure (365 nm, 1.08 J/cm2) resulted in 82 ± 13% core release for the 75 mol % phthalaldehyde/25 mol % propanal copolymer microcapsules. The photoresponsive shell provides a versatile polymer microcapsule technology for on-demand, controlled release of hydrophobic core payloads.


Asunto(s)
Cápsulas , Cápsulas/química , Rayos Ultravioleta , Polímeros/química , Liberación de Fármacos
6.
Carbohydr Polym ; 343: 122453, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174131

RESUMEN

Traditional pressure-sensitive microcapsules used in textiles face challenges of insufficient environmental friendliness in the production process and uncontrollable fragrance release. To address this issue, this study utilized quaternary ammonium chitosan and silica as wall materials to develop a magnetic aromatic microcapsule. The microstructure of the microcapsules was controlled by magnetic field induction, and its evolution pattern was investigated. After magnetic field induction, the microcapsules exhibited a trend of evolving from spherical to asymmetrical shapes, accompanied by significant changes in mechanical properties. Asymmetrical microcapsules showed higher adhesion and lower stiffness. When applied to cotton textiles, the cotton textiles treated with asymmetrical microcapsules released 63.40 % of lavender essential oil after 200 friction cycles, representing an 11.3 % improvement in release efficiency compared to regular microcapsules, indicating better mechanical stimulus responsiveness. Additionally, in antibacterial tests, aromatic cotton exhibited a 96.52 % inhibition ratio against Escherichia coli. In summary, this study explores methods to adjust the mechanical properties of microcapsules and the relationship between mechanical properties and microstructure, providing a new approach for functional textiles.


Asunto(s)
Antibacterianos , Cápsulas , Quitosano , Escherichia coli , Compuestos de Amonio Cuaternario , Quitosano/química , Compuestos de Amonio Cuaternario/química , Escherichia coli/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Campos Magnéticos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Odorantes/análisis , Textiles , Dióxido de Silicio/química , Fibra de Algodón
7.
Int J Biol Macromol ; 277(Pt 3): 134308, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094880

RESUMEN

In order to reduce the quality loss of citrus and extend its storage time after harvest, it is essential to develop coated kraft papers with antibacterial and fresh-keeping properties. In this study, cinnamon essential oil (CEO)/soybean protein isolate (SPI) microcapsules were prepared by the coagulation method, and their properties were optimized. Then, the microcapsules were added to konjac glucomannan (KGM) as a coating solution to enhance the physical, and chemical properties of kraft paper by a coating method. The release behavior of CEO, tensile properties, antibacterial properties and preservation effects of the paper were investigated. The results show that when the ratio of wall to core was 7:3, the highest encapsulation rate was 92.20 ± 0.43 %. The coating treatment significantly reduced the oxygen and water vapor transmission rates of kraft paper. The shelf life of citrus treated with coated Kraft was extended by >10 days. Thus, the CEO/SPI microencapsulation and KGM coating could improve the properties of kraft paper and have the potential for citrus preservation.


Asunto(s)
Cápsulas , Cinnamomum zeylanicum , Citrus , Mananos , Aceites Volátiles , Proteínas de Soja , Citrus/química , Proteínas de Soja/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Mananos/química , Mananos/farmacología , Cinnamomum zeylanicum/química , Papel , Conservación de Alimentos/métodos , Antibacterianos/química , Antibacterianos/farmacología
8.
J Microencapsul ; : 1-29, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101751

RESUMEN

This article provides a brief description of microcapsule self-healing technique and its potential use in concrete structures. Because concrete is readily available and reasonably priced, it is widely utilised in the building industry globally, despite its susceptibility to the formation of cracks. The longevity and security of concrete buildings are greatly impacted by the existence of cracks and other deterioration occurring during the course of their use. Through the encapsulation of healing material inside microcapsules, which shows rupture upon cracking in cement-based materials, the microcapsule exhibits promise in accomplishing self-healing and increasing durability and strength in the structures. The article first explains the basic ideas behind the science of microcapsule self-healing and then looks at different ways to prepare microcapsules. It also looks into how adding microcapsules affects the basic characteristics of the concrete building. A summary of the efficiency and self-healing mechanisms of microcapsules is also provided.


The article explains the advantages of the microcapsule self-healing method in concrete.Preparation method and intrinsic properties of different microcapsules are discussed.Different self-healing measurement techniques in cement-based materials are discussed.The study examines the qualitative aspects of various self-healing methods.Looks into how adding microcapsules affects the properties of cementitious materials.

9.
Int J Biol Macromol ; 279(Pt 2): 135214, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216583

RESUMEN

Alyssum homolocarpum seed gum (AHSG) and sodium alginate (SA) were utilized as wall materials for the microencapsulation of Echinacea purpurea extract via spray drying. Furthermore, effect of microcapsules on the oxidative stability of camelina oil was assessed over a 30-day storage period. The results showed that with an increase in AHSG concentration, the particle size, polydispersity index, and zeta potential of emulsions decreased, while their viscosity, and stability increased. Microcapsules prepared with AHSG alone exhibited the highest encapsulation efficiency (90.70 %), loading efficiency (40.70 %), and water solubility (88.47 %), but the lowest moisture content (1.45 %), water activity (0.31), wettability (198 s), and hygroscopicity (13.50 g/100 g). Scanning electron microscopy analysis revealed a spherical and smooth surface for AHSG alone-based microcapsules. Fourier transform infrared spectroscopy analysis indicated that certain chemical interactions occurred between the E. purpurea extract and wall materials. By incorporating AHSG/SA-based microcapsules containing E. purpurea extract into camelina oil, the peroxide value (increasing from 1.79 to 5.12 meq∙O2/kg) and anisidine value (increasing from 1.63 to 7.09) were maintained during the 30-day storage period. In conclusion, the microcapsules prepared with AHSG alone showed significant potential for encapsulating E. purpurea extract and subsequently enhancing oxidative stability of camelina oil, comparable to TBHQ.

10.
ACS Appl Mater Interfaces ; 16(31): 40326-40355, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042830

RESUMEN

Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.


Asunto(s)
Cápsulas , Composición de Medicamentos , Cápsulas/química , Composición de Medicamentos/métodos , Polímeros/química
11.
Int J Biol Macromol ; 276(Pt 2): 133956, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029830

RESUMEN

Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.


Asunto(s)
Cápsulas , Humanos , Animales , Sistemas de Liberación de Medicamentos , Sustancias Macromoleculares/química , Alginatos/química , Intestinos , Composición de Medicamentos/métodos , Quitosano/química , Enfermedades Intestinales/terapia , Enfermedades Intestinales/diagnóstico
12.
Food Chem ; 460(Pt 1): 140466, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032294

RESUMEN

Enzyme is an important class of catalyst. However, the efficiency of enzyme-catalyzed reactions is constrained by the limited contact between the enzyme and its substrate. In this study, to overcome this challenge, lipase-loaded microcapsules were prepared from natural shellac and nanoparticles using the emulsion template method. These microcapsules can perform dual roles as stabilizers and enzyme carriers to construct a water-in-oil Pickering interfacial biocatalytic system. The results showed that the hydrolytic conversion of the microcapsules could reach 90% within 20 min, which was significantly higher than that of the traditional biphasic system. The catalytic activity was influenced by the oil-to-water volume ratio and the microcapsule content. The microcapsules remained highly catalytic efficiency even after storage for three months or seven cycles of reuse. These microcapsules were prepared without the use of any cross-linkers or harsh solvents. This green and efficient catalytic system has great application prospects in the food industry.


Asunto(s)
Biocatálisis , Cápsulas , Enzimas Inmovilizadas , Lipasa , Lipasa/química , Lipasa/metabolismo , Cápsulas/química , Enzimas Inmovilizadas/química , Emulsiones/química
13.
Int J Biol Macromol ; 275(Pt 1): 134086, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084994

RESUMEN

Iturin A (IA) encapsulated in chitosan (CS) microcapsules (IA/CS) underwent thorough physicochemical characterization using thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). SEM confirmed the smooth, spherical morphology of the IA/CS microcapsules, while FTIR revealed complex intermolecular interactions between IA and CS. TGA demonstrated thermal stability within the 0-100 °C range, while particle size analysis revealed an average diameter of 553.4 nm. To evaluate IA/CS efficacy in post-harvest grape preservation, grapes were treated with sterile water (CK), 10 g/L CS, 0.1 g/L IA/CS, and 0.1 g/L chitosan empty microcapsules (CKM), then stored at 25 °C for 16 days. IA/CS significantly reduced decay and respiration intensity by 52.3 % and 23.8 %, respectively, compared to CK. IA/CS treatment also inhibited abscission rate, weight loss, firmness reduction, total soluble solids consumption, titratable acidity consumption, polyphenol oxidase, and peroxidase activities on par with CS treatment (p > 0.05), but performed better than CK (reductions of 26.9 %, 41.2 %, 25.8 %, 27.2 %, 24.2 %, 19.4 %, and 17.4 %, respectively) and CKM (p < 0.05). Sensory evaluation confirmed that IA/CS effectively suppressed decay, slowed post-harvest metabolic activity, and maintained grape quality. Therefore, IA/CS microcapsules offer a promising method for extending grape shelf life and preserving quality.


Asunto(s)
Cápsulas , Quitosano , Conservación de Alimentos , Vitis , Quitosano/química , Vitis/química , Conservación de Alimentos/métodos , Tamaño de la Partícula , Frutas/química , Espectroscopía Infrarroja por Transformada de Fourier
14.
Sci Rep ; 14(1): 17384, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075143

RESUMEN

Bacillus thuringiensis (Bt) is a widely used microbial insecticide, but its effectiveness is limited due to the degradation of Bt spores and crystals under UV radiation from sunlight. The objective of this study was to develop a novel Bt formulation with improved UV protection by utilizing sulfur quantum dots (SQDs) as stabilizing agents in a Pickering emulsion. The SQDs were comprehensively characterized using FTIR, XRD, TEM, HRTEM, UV, and fluorescence analyses, which confirmed the formation of well-dispersed, spherical SQDs. The microcapsule formulation with SQDs demonstrated superior UV stability, as it maintained 57.77% spore viability after 96 h of UV exposure, in comparison to 33.74% and 31.25% for the SQDs formulation (non-microcapsules) and unprotected Bt formulations (free spore, as a control), respectively. Furthermore, the microcapsule formulation exhibited higher insecticidal activity, resulting in a larval mortality of 71.22%, as opposed to 42.34% and 38.42% for the other formulations. These findings emphasize the effectiveness of microcapsule formulation with SQDs in safeguarding Bt spores and crystals against UV radiation, thereby enhancing their practical application in pest control. This approach presents a promising strategy for the development of biopesticides that are more resilient and have a longer shelf life.


Asunto(s)
Bacillus thuringiensis , Puntos Cuánticos , Esporas Bacterianas , Azufre , Rayos Ultravioleta , Puntos Cuánticos/química , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/efectos de la radiación , Azufre/química , Azufre/farmacología , Animales , Insecticidas/química , Insecticidas/farmacología , Larva/efectos de los fármacos
15.
Mar Drugs ; 22(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39057417

RESUMEN

To improve probiotics' survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems.


Asunto(s)
Cápsulas , Calor , Lactobacillus plantarum , Laminaria , Polisacáridos , Laminaria/química , Polisacáridos/farmacología , Polisacáridos/química , Probióticos/farmacología , Probióticos/administración & dosificación , Digestión/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Concentración de Iones de Hidrógeno , Gelatina/química , Gelatina/farmacología , Viabilidad Microbiana/efectos de los fármacos , Algas Comestibles
16.
ACS Appl Mater Interfaces ; 16(29): 38564-38575, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007644

RESUMEN

In this work, graphene oxide (GO)/polymer hybrid microcapsule-loaded self-healing agents were prepared via the combination of the emulsion template method and photopolymerization technology. The incorporation of GO in the microcapsule shell not only improved the impermeability, mechanical property, and solvent resistance property of the microcapsules significantly but also endowed the microcapsules with photothermal conversion property. By incorporating GO/polymer hybrid microcapsules in water-borne epoxy resin, a novel kind of anticorrosion coating with a double self-healing property was successfully fabricated. When the coating was scratched, the linseed oil (LO) encapsulated in the microcapsules could fill the crack, and the photothermal conversion property of GO could promote the molecular chain movement of the damaged area under near-infrared (NIR) irradiation to realize the close of the crack. Based on the filling of LO and photothermal conversion-induced scratch narrowing, the "filling" and "close" double self-healing effect can be realized under temporal NIR irradiation, which could lead to the complete recovery of the scratched coating. The |Z|f=0.1Hz value of the damaged coating with GO/polymer microcapsules after double healing was comparable to that of the intact coating, which was about 4 orders of magnitude higher than that of the scratched blank coating and single self-healing coating. As to the neutral salt spray test, the scratched blank coating failed in protection after 100 h, while the healed composite coating did not show any corrosion after 300 h.

17.
Chembiochem ; : e202400468, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075031

RESUMEN

DNA condensates, formed by liquid-liquid phase separation (LLPS), emerge as promising soft matter assemblies for creating artificial cells. The advantages of DNA condensates are their molecular permeability through the surface due to their membrane-less structure and their fluidic property. However, they face challenges in the design of their surface, e.g., unintended fusion and less regulation of permeable molecules. Addressing them, we report surface modification of DNA condensates with DNA origami nanoparticles, employing a Pickering-emulsion strategy. We successfully constructed core-shell structures with DNA origami coatings on DNA condensates and further enhanced the condensate stability toward fusion via connecting DNA origamis by responding to DNA input strands. The 'armoring' prevented the fusion of DNA condensates, enabling the formation of multicellular-like structures of DNA condensates. Moreover, the permeability was altered through the state change from coating to armoring the DNA condensates. The armored DNA condensates have significant potential for constructing artificial cells, offering increased surface stability and selective permeability for small molecules while maintaining compartmentalized space and multicellular organization.

18.
Macromol Rapid Commun ; : e2400289, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073047

RESUMEN

Microcapsules have attracted significant attention in academia and industry due to their unique properties for protecting and controlling the release of active substances. However, based on water-insoluble biopolymers, developing a straightforward approach to prepare microcapsules with improved biocompatibility and functional shells remains a great challenge. In this study, zein, a water-insoluble protein, is employed to prepare robust microcapsules facilely using oil-in-aqueous ethanol Pickering emulsions as templates. First, the emulsion template is stabilized by hydrophobic silica nanoparticles with in situ surface modification of tannic acid. The zein is then precipitated at the interface in a controlled manner using antisolvent approach to obtain silica/tannic acid/zein (STZ) microcapsules. It is found that the concentration of zein and the presence of tannic acid played a significant role in the formation of STZ microcapsules with well-defined morphology and a robust shell. The uniform deposition of zein on the surface of template droplets is facilitated by the interactions between tannic acid and zein via hydrogen bond and electrostatic force. Finally, the resulting STZ microcapsules showed super resistance to ultraviolet (UV) radiation and high temperature for the unstable, lipophilic, and active substance of ß-carotene.

19.
Food Chem X ; 23: 101510, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38947341

RESUMEN

We prepared tea tree essential oil microcapsules, and the microcapsules and pullulan were coated on kraft paper to prepare an antibacterial paper. The antibacterial activity, structural characterization, and thermal stability of the prepared microcapsules and packaging paper were then tested. We found that the retention rate of microcapsules reached 87.1% after a 70 min of high-temperature treatment. The minimum inhibitory concentrations of microcapsules to S. aureus and E. coli were 112 mg/mL and 224 mg/mL, and the bacteriostatic zones of the packaging paper to E. coli and S. aureus were 17.49 mm and 22.75 mm, respectively. The prepared microcapsules were irregular. The paper coating was formed via hydrogen bonding, which filled the pores of paper fibers. When compared with the base paper, the roughness of the paper was reduced to 7.16 nm (Rq) and 5.61 nm (Ra), and no thermal decomposition occurred at <288 °C, which together implies a good application prospect.

20.
Int J Biol Macromol ; 273(Pt 1): 132872, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942671

RESUMEN

Diseases caused by viruses pose a significant risk to the health of aquatic animals, for which there are presently no efficacious remedies. Interferon (IFN) serving as an antiviral agent, is frequently employed in clinical settings. Due to the unique living conditions of aquatic animals, traditional injection of interferon is cumbersome, time-consuming and labor-intensive. This study aimed to prepare IFN microcapsules through emulsion technique by using resistant starch (RS) and carboxymethyl chitosan (CMCS). Optimization was achieved using the Box-Behnken design (BBD) response surface technique, followed by the creation of microcapsules through emulsification. With RS at a concentration of 1.27 %, a water­oxygen ratio of 3.3:7.4, CaCl2 at 13.67 %, CMCS at 1.04 %, the rate of encapsulation can escalate to 80.92 %. Rainbow trout infected with Infectious hematopoietic necrosis virus (IHNV) and common carp infected with Spring vireemia (SVCV) exhibited a relative survival rate (RPS) of 65 % and 60 % after treated with IFN microcapsules, respectively. Moreover, the microcapsules effectively reduced the serum AST levels and enhanced the expression of IFNα, IRF3, ISG15, MX1, PKR and Viperin in IHNV-infected rainbow trout and SVCV-infected carp. In conclusion, this integrated IFN microcapsule showed potential as an antiviral agent for treatment of viral diseases in aquaculture.


Asunto(s)
Interferón-alfa , Oncorhynchus mykiss , Proteínas Recombinantes , Animales , Oncorhynchus mykiss/virología , Interferón-alfa/farmacología , Proteínas Recombinantes/farmacología , Cápsulas , Antivirales/farmacología , Antivirales/química , Composición de Medicamentos , Quitosano/química , Quitosano/análogos & derivados , Virus de la Necrosis Hematopoyética Infecciosa/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Enfermedades de los Peces/virología , Enfermedades de los Peces/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA