Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Sci Health B ; 59(6): 315-332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676363

RESUMEN

Heavy metals (HMs) are widely used in various industries. High concentrations of HMs can be severely toxic to plants, animals and humans. Microorganism-based bioremediation has shown significant potential in degrading and detoxifying specific HM contaminants. In this study, we cultivated a range of bacterial strains in liquid and solid nutrient medium containing different concentrations of different HMs to select and analyze bacteria capable of transforming HMs. The bacterial strains most resistant to selected HMs and exhibiting the ability to remove HMs from contaminated soils were identified. Then, the bacterial species capable of utilizing HMs in soil model experiments were selected, and their ability to transform HMs was evaluated. This study has also generated preliminary findings on the use of plants for further removal of HMs from soil after microbial bioremediation. Alcaligenes faecalis, Delftia tsuruhatensis and Stenotrophomonas sp. were selected for their ability to grow in and utilize HM ions at the maximum permissible concentration (MPC) and two times the MPC. Lysinibacillus fusiformis (local microflora) can be used as a universal biotransformation tool for many HM ions. Brevibacillus parabrevis has potential for the removal of lead ions, and Brevibacillus reuszeri and Bacillus safensis have potential for the removal of arsenic ions from the environment. The bacterial species have been selected for bioremediation to remove heavy metal ions from the environment.


Asunto(s)
Biodegradación Ambiental , Biotransformación , Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Stenotrophomonas/metabolismo , Delftia/metabolismo , Alcaligenes faecalis/metabolismo
2.
J Hazard Mater ; 459: 132100, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37523962

RESUMEN

The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.


Asunto(s)
Petróleo , Contaminantes del Suelo , ARN Ribosómico , Genes de ARNr , Variaciones en el Número de Copia de ADN , Contaminantes del Suelo/metabolismo , Bacterias/genética , Bacterias/metabolismo , Hidrocarburos/metabolismo , Biodegradación Ambiental , Operón , Petróleo/metabolismo , Microbiología del Suelo , Suelo/química
3.
Chemosphere ; 329: 138707, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37068614

RESUMEN

The elimination of contaminants caused by anthropogenic activities and rapid industrialization can be accomplished using the widely used technology of bioremediation. Recent years have seen significant advancement in our understanding of the bioremediation of coupled polycyclic aromatic hydrocarbon contamination caused by microbial communities including bacteria, algae, fungi, yeast, etc. One of the newest techniques is microbial-based bioremediation because of its greater productivity, high efficiency, and non-toxic approach. Microbes are appealing candidates for bioremediation because they have amazing metabolic capacity to alter most types of organic material and can endure harsh environmental conditions. Microbes have been characterized as extremophiles that can survive in a variety of environmental circumstances, making them the treasure troves for environmental cleanup and the recovery of contaminated soil. In this study, the mechanisms underlying the bioremediation process as well as the current situation of microbial bioremediation of polycyclic aromatic hydrocarbon are briefly described.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Biodegradación Ambiental , Suelo
4.
Microorganisms ; 11(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37110315

RESUMEN

Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.

5.
Ecotoxicol Environ Saf ; 254: 114760, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907093

RESUMEN

Microbial bioremediation of heavy metal-polluted soil is a promising technique for reducing heavy metal accumulation in crops. In a previous study, we isolated Bacillus vietnamensis strain 151-6 with a high cadmium (Cd) accumulation ability and low Cd resistance. However, the key gene responsible for the Cd absorption and bioremediation potential of this strain remains unclear. In this study, genes related to Cd absorption in B. vietnamensis 151-6 were overexpressed. A thiol-disulfide oxidoreductase gene (orf4108) and a cytochrome C biogenesis protein gene (orf4109) were found to play major roles in Cd absorption. In addition, the plant growth-promoting (PGP) traits of the strain were detected, which enabled phosphorus and potassium solubilization and indole-3-acetic acid (IAA) production. Bacillus vietnamensis 151-6 was used for the bioremediation of Cd-polluted paddy soil, and its effects on growth and Cd accumulation in rice were explored. The strain increased the panicle number (114.82%) and decreased the Cd content in rice rachises (23.87%) and grains (52.05%) under Cd stress, compared with non-inoculated rice in pot experiments. For field trials, compared with the non-inoculated control, the Cd content of grains inoculated with B. vietnamensis 151-6 was effectively decreased in two cultivars (low Cd-accumulating cultivar: 24.77%; high Cd-accumulating cultivar: 48.85%) of late rice. Bacillus vietnamensis 151-6 encoded key genes that confer the ability to bind Cd and reduce Cd stress in rice. Thus, B. vietnamensis 151-6 exhibits great application potential for Cd bioremediation.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Oryza/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Metales Pesados/metabolismo , Grano Comestible/química , Suelo
6.
Sci Total Environ ; 877: 162812, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924951

RESUMEN

Cadmium (Cd) can accumulate in agriculture soil from the regular application of phosphorus (P) fertilizer. Microbiological method is considered as a potentially effective strategy that can not only remediate the Cd-contaminated soil but also provide the phosphorus needed for crop growth. However, the toxicity of Cd may affect the activity of microorganisms. To solve this problem, Klebsiella variicola with excellent phosphate solubilization ability (155.30 mg L-1 at 48 h) and Cd adsorption rate (90.84 % with 10 mg L-1 Cd initial concentration) was firstly isolated and identified in this study. Then, a phosphoric acid and ball milling co-modified biochar (PBC) was selected as the carrier to promote the activities of K. variicola under Cd pollution. Surface characterization revealed that the promotion of K. variicola by PBC was mainly attributed to the large specific surface area and diverse functional groups. Compared to contaminated soil, microbial PBC (MPBC) significantly increased the pakchoi biomass and phosphorus (P) content, while the Cd content in leave and root of pakchoi (Brassica chinensis L.) decreased by 25.90-43.46 % (P < 0.05). The combined application also favored the transformation of the resistant P fractions to bioavailable P, and facilitated the immobilization of 20.12 % exchangeable Cd to reducible, oxidizable, and residual Cd in the treated soil. High-throughput sequencing revealed that the response of the soil microbial community to the MPBC was more beneficial than K. variicola or PBC alone. Therefore, the application of MPBC has the potential to act as an efficient, stable, and environmentally friendly sustainable product for Cd remediation and enhanced P bioavailability in agricultural production.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Suelo , Fosfatos , Fósforo , Disponibilidad Biológica , Carbón Orgánico , Contaminantes del Suelo/análisis
7.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771138

RESUMEN

Arsenic is a highly toxic metalloid widespread in the Earth's crust, and its contamination due to different anthropogenic activities (application of agrochemicals, mining, waste management) represents an emerging environmental issue. Therefore, different sustainable and effective remediation methods and approaches are needed to prevent and protect humans and other organisms from detrimental arsenic exposure. Among numerous arsenic remediation methods, those supported by using microbes as sorbents (microbial remediation), and/or plants as green factories (phytoremediation) are considered as cost-effective and environmentally-friendly bioremediation. In addition, recent advances in genetic modifications and biotechnology have been used to develop (i) more efficient transgenic microbes and plants that can (hyper)accumulate or detoxify arsenic, and (ii) novel organo-mineral materials for more efficient arsenic remediation. In this review, the most recent insights from arsenic bio-/phytoremediation are presented, and the most relevant physiological and molecular mechanisms involved in arsenic biological routes, which can be useful starting points in the creation of more arsenic-tolerant microbes and plants, as well as their symbiotic associations are discussed.


Asunto(s)
Arsénico , Metaloides , Contaminantes del Suelo , Humanos , Arsénico/análisis , Biodegradación Ambiental , Plantas/genética , Biotecnología , Contaminantes del Suelo/toxicidad
8.
Microorganisms ; 12(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38257901

RESUMEN

Throughout history, cases of arsenic poisoning have been reported worldwide, and the highly toxic effects of arsenic to humans, plants, and animals are well documented. Continued anthropogenic activities related to arsenic contamination in soil and water, as well as its persistency and lethality, have allowed arsenic to remain a pollutant of high interest and concern. Constant scrutiny has eventually resulted in new and better techniques to mitigate it. Among these, microbial remediation has emerged as one of the most important due to its reliability, safety, and sustainability. Over the years, numerous microorganisms have been successfully shown to remove arsenic from various environmental matrices. This review provides an overview of the interactions between microorganisms and arsenic, the different mechanisms utilized by microorganisms to detoxify arsenic, as well as current trends in the field of microbial-based bioremediation of arsenic. While the potential of microbial bioremediation of arsenic is notable, further studies focusing on the field-scale applicability of this technology is warranted.

9.
Plants (Basel) ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501240

RESUMEN

Medicinal plants (MPs) are important resources widely used in the treatment and prevention of diseases and have attracted much attention owing to their significant antiviral, anti-inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seriously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil, play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indirectly affects the growth and development, metabolic regulation and active ingredient accumulation of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment and non-toxic to organisms, have been recommended as a promising alternative to conventional fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorption and accumulation of harmful substances and regulating the synthesis of secondary metabolites. The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly recognized, but the current understanding of the interaction between soil conditions, root exudates and microbial communities and the mechanism of rhizosphere microecology affecting the secondary metabolism of MPs is still quite limited. More research is needed to investigate the effects of the microbiome on the growth and quality of different medicinal species. Therefore, the present review summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil remediation and plant growth promotion and the potential mechanism to further guide the use of microbial resources to promote the ecological cultivation and sustainable development of MPs.

10.
Biotechnol Rep (Amst) ; 36: e00767, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36245697

RESUMEN

It has been demonstrated that biostimulation is necessary to investigate the interactions between indigenous bacteria and establish an approach for the bioremediation of soils contaminated with weathered oil. This was achieved by adjusting the carbon (C)/nitrogen (N)/phosphorus (P) ratio to 100/10/1 combined with the application of 0.8 mL/kg Tween-80. In addition, three indigenous bacteria isolated from the same soil were introduced solely or combined concomitantly with stimulation. Removal of n-alkanes and the ratios of n-heptadecane to pristane and n-octadecane to phytane were taken to indicate their biodegradation performance over a period of 16 weeks. One strain of Pseudomonas aeruginosa D7S1 improved the efficiency of the process of stimulation. However, another Pseudomonas aeruginosa, D5D1, inhibited the overall process when combined with other bacteria. One strain of Bacillus licheniformis D1D2 did not affect the process significantly. The Fourier transform infrared analysis of the residual hydrocarbons supported the conclusions pertaining to the biodegradation processes when probing the modifications in densities and stretching. The indigenous bacteria cannot mutually benefit from their metabolisms for bioremediation if augmented artificially. However, the strain Pseudomonas. aeruginosa D7S1 was able to perform better alone than in a consortium of indigenous bacteria.

11.
Bioengineered ; 13(3): 4923-4938, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35164635

RESUMEN

Industrial effluents/wastewater are the main sources of hexavalent chromium (Cr (VI)) pollutants in the environment. Cr (VI) pollution has become one of the world's most serious environmental concerns due to its long persistence in the environment and highly deadly nature in living organisms. To its widespread use in industries Cr (VI) is highly toxic and one of the most common environmental contaminants. Cr (VI) is frequently non-biodegradable in nature, which means it stays in the environment for a long time, pollutes the soil and water, and poses substantial health risks to humans and wildlife. In living things, the hexavalent form of Cr is carcinogenic, genotoxic, and mutagenic. Physico-chemical techniques currently used for Cr (VI) removal are not environmentally friendly and use a large number of chemicals. Microbes have many natural or acquired mechanisms to combat chromium toxicity, such as biosorption, reduction, subsequent efflux, or bioaccumulation. This review focuses on microbial responses to chromium toxicity and the potential for their use in environmental remediation. Moreover, the research problem and prospects for the future are discussed in order to fill these gaps and overcome the problem associated with bacterial bioremediation's real-time applicability.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Biodegradación Ambiental , Cromo/química , Cromo/toxicidad , Humanos , Suelo , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Bull Environ Contam Toxicol ; 108(3): 478-484, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32978646

RESUMEN

Halogenated compounds are one of the largest groups of environmental-hazardous chemicals. The removal of the halogen atom from the substrate is possible by the catalytic activity of a type of enzyme called dehalogenase. Hydrolytic dehalogenases are suggested to be a good biodegradation catalyst for halogenated compounds with potential bioremediation applications. Therefore, the identification of possible bacterial strains that produce dehalogenase is of great importance. Soil microorganisms that are regularly exposed to halogenated pesticides are a major source of hydrolytic dehalogenase. Their proper identification may be useful in the production of high-quality dehalogenase. DNA stable isotope probing (DNA-SIP) is quite a useful technique for the identification of active microorganisms that assimilate specific carbon substrates and nutrients. Metagenomics combined with a stable isotope probe (SIP) technique could therefore be used to detect bacterial dehalogenases in pesticides exposed agricultural soil.


Asunto(s)
Bacterias , Metagenómica , Bacterias/genética , Biodegradación Ambiental , Marcaje Isotópico/métodos , Isótopos , Metagenómica/métodos
13.
Sheng Wu Gong Cheng Xue Bao ; 37(10): 3475-3486, 2021 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-34708605

RESUMEN

A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed.


Asunto(s)
Bioimpresión , Contaminantes Ambientales , Materiales Biocompatibles , Biodegradación Ambiental , Tecnología , Ingeniería de Tejidos
14.
Environ Pollut ; 290: 118064, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481302

RESUMEN

Acid mine drainage (AMD) is a serious environmental problem worldwide that requires efficient and sustainable remediation technologies including the use of biological mechanisms. A key challenge for AMD bioremediation is to provide optimal conditions for microbial-mediated immobilisation of trace metals. Although organic carbon and oxygen can enhance treatment efficiency, the effect on microbial communities is unclear. In this study, surface sediments from a natural wetland with proven efficiency for AMD bioremediation were artificially exposed to oxygen (by aeration) and/or organic carbon (in the form of mixed organic acids) and incubated under laboratory conditions. In addition to measuring changes in water chemistry, a metagenomics approach was used to determine changes in sediment bacterial, archaeal and fungal community structure, and functional gene abundance. The addition of organic carbon produced major changes in the abundance of microorganisms related to iron and sulfur metabolism (including Geobacter and Pelobacter) and increased levels of particulate metals via sulfate reduction. Aeration resulted in an increase in Sideroxydans abundance but no significant changes in metal chemistry were observed. The study concludes that the utilisation of organic carbon by microorganisms is more important for achieving efficient AMD treatment than the availability of oxygen, yet the combination of oxygen with organic carbon addition did not inhibit the improvements to water quality.


Asunto(s)
Microbiota , Humedales , Ácidos , Minería , Calidad del Agua
15.
Electron. j. biotechnol ; 53: 1-7, Sep.2021. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1444436

RESUMEN

BACKGROUND Arsenic contamination in the ground water of rural India is a recurrent problem and decon tamination is mostly based on the chemical or physical treatments until now. Microbial bioremediation is eco-friendly, cheap, time-efficient and does not produce any toxic by-products. RESULT In the present study, a high arsenic tolerant bacteria Brevundimonas aurantiaca PFAB1 was iso lated from Panifala hot spring located in West Bengal, India. Previously Panifala was also reported to be an arsenic-rich hot spring. B. aurantiaca PFAB1 exhibited both positive arsenic reductase and arsenite oxidase activity. It was tolerant to arsenite up to 90 mM and arsenate up to 310 mM. Electron microscopy has proved significant changes in cellular micromorphology and stalk appearance under the presence of arsenic in growth medium. Bioaccumulation of arsenic in As (III) treated cells were 0.01% of the total cell weight, while 0.43% in case of As (V) treatment. CONCLUSIONS All experimental lines of evidence prove the uptake/accumulation of arsenic within the bac terial cell. All these features will help in the exploitation of B. aurantiaca PFAB1 as a potent biological weapon to fight arsenic toxicity in the near future


Asunto(s)
Arsénico/toxicidad , Arsénico/química , Aguas Termales/química , Caulobacteraceae/metabolismo , Caulobacteraceae/química , Arsénico/metabolismo , India
16.
Chinese Journal of Biotechnology ; (12): 3475-3486, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-921442

RESUMEN

A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed.


Asunto(s)
Materiales Biocompatibles , Biodegradación Ambiental , Bioimpresión , Contaminantes Ambientales , Tecnología , Ingeniería de Tejidos
17.
Chemosphere ; 265: 129151, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33302206

RESUMEN

How to effectively bioremediate aquacultural wastewater using microbes is an urgent issue for the application of aquaculture beneficial microorganisms. Purple non-sulfur bacteria (PNSB) are beneficial in preventing related pollution in aquaculture applications. An autochthonous PNSB Rhodobacter sphaeroides was employed in this study to explore an effective bioremediation strategy of aquacultural wastewater. The test bacterium showed high performance in the removal of ammonium (97.50% ± 0.78% of 42 mg L-1 NH4+-N) and phosphate (93.24% ± 0.71% of 50 mg L-1 PO43--P) in the synthetic wastewater, which are the two crucial indicators of the aquacultural wastewater bioremediation. The study also unveiled that the imbalanced ratio of nutrients in water was the principal reason for limiting the efficient bioremediation of shrimp-culture wastewater. Therefore, an effective microbial bioremediation strategy was proposed by comprehensively considering bacterial pollutant metabolism kinetics constants such as specific consumption yields of chemical oxygen demand (COD)/phosphorous and nitrogen/phosphorous. Finally, COD, total nitrogen (TN), total phosphorus (TP), and ammonium (NH4+-N) in the wastewater were examined, and the results showed that they all decreased to the acceptable values. In conclusion, this study suggested a novel method for improved bioremediation efficiency of aquacultural wastewater, and the findings revealed that this strategy is promising due to its characteristics to be used in various aquaculture wastewater types.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Acuicultura , Bacterias , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Cinética , Nitrógeno/análisis , Fósforo , Eliminación de Residuos Líquidos
18.
BMC Biotechnol ; 20(1): 39, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711499

RESUMEN

BACKGROUND: With the high demand for diesel across the world, environmental decontamination from its improper usage, storage and accidental spills becomes necessary. One highly environmentally friendly and cost-effective decontamination method is to utilize diesel-degrading microbes as a means for bioremediation. Here, we present a newly isolated and identified strain of Acinetobacter calcoaceticus ('CA16') as a candidate for the bioremediation of diesel-contaminated areas. RESULTS: Acinetobacter calcoaceticus CA16 was able to survive and grow in minimal medium with diesel as the only source of carbon. We determined through metabolomics that A. calcoaceticus CA16 appears to be efficient at diesel degradation. Specifically, CA16 is able to degrade 82 to 92% of aliphatic alkane hydrocarbons (CnHn + 2; where n = 12-18) in 28 days. Several diesel-degrading genes (such as alkM and xcpR) that are present in other microbes were also found to be activated in CA16. CONCLUSIONS: The results presented here suggest that Acinetobacter strain CA16 has good potential in the bioremediation of diesel-polluted environments.


Asunto(s)
Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/aislamiento & purificación , Acinetobacter calcoaceticus/metabolismo , Gasolina , Genómica , Microbiología del Suelo , Acinetobacter calcoaceticus/clasificación , Alcanos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Canadá , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrocarburos , Metabolómica , Filogenia , Suelo
19.
Chemosphere ; 252: 126597, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32229361

RESUMEN

This study aimed to determine the ability of the fungus Trichoderma harzianum strain T22 (Th-T22) to utilize diesel fuel as a carbon source. The potential use of Th-T22 for diesel bioremediation in an artificial soil was tested by inoculating a diesel-sand mixture with a fungal mycelial suspension of Th-T22. Given the ability of ozone to degrade compounds with low biochemical reactivity, the effect of a pre- and post-ozonation was also evaluated. The survival, growth and sporulation of Th-T22 throughout the bioremediation trial were monitored in all the treatments. In the post-ozonation treatments, the biodegradation percentages of diesel removal were 70.16% and 88.35% in Th-T22-inoculated sand treated or untreated with the antibacterial streptomycin, respectively. The results showed that ozonation alone caused good removal efficiencies (41.9%) but it was much more effective if combined with Th-T22 in a post-ozonation regime, whereas pre-ozonation negatively affected the subsequent biodegradation, likely due to its disinfectant and oxidizing effect on Th-T22. The results obtained demonstrated the significant mycoremediation ability of Th-T22 in diesel-contaminated sand and its possible use as a bioremediation agent for diesel spills in polluted sites.


Asunto(s)
Biodegradación Ambiental , Gasolina , Contaminación por Petróleo , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Trichoderma/fisiología , Ozono , Arena , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Trichoderma/metabolismo
20.
Sci Total Environ ; 691: 135-145, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31319251

RESUMEN

The residues of dieldrin and dichlorodiphenyltrichloroethane (DDT), internationally-banned agricultural insecticides, continue to exceed government guidelines in some surface soils 30 years after use. Little is known regarding the soil factors and microbial community dynamics associated with the in-situ biodegradation of these organochlorine chemicals. We hypothesised that soil organic matter, a key factor affecting microbial biomass and diversity, affects the biodegradation and total loss of the pollutants 30 years after use. We sampled 12 contaminated paddocks with residue concentrations monitoring data since 1988 that represent two different agricultural surface-soils. The total loss and current concentrations of the residues was correlated with soil physicochemical properties, microbial biomass carbon, microbial community diversity indices and microbial community abundance. Current dieldrin and DDT residue concentrations were positively correlated with soil organic matter and clay contents. However, key indicators for loss of residues after 23-30 years were low carbon-to­nitrogen ratios, high microbial-C-to-total-C ratios and high fungal community evenness. The results support the composition of soil organic matter as an important factor affecting degradation of organochlorines and that co-metabolism of dieldrin and DDT could be enhanced by manipulating the composition of soil organic matter to cater for a broad diversity of microbial function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA