Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398971

RESUMEN

During micro-milling, regenerative chatter will decrease the machining accuracy, destabilize the micro-milling process, shorten the life of the micro-mill, and increase machining failures. Establishing a mathematical model of chatter vibration is essential to suppressing the adverse impact of chatter. The mathematical model must include the dynamic motions of the cutting system with the spindle-holder-tool assembly and tool runout. In this study, an integrated model was developed by considering the centrifugal force induced by rotational speeds, the gyroscopic effect introduced by high speeds, and the tool runout caused by uncertain factors. The tool-tip frequency-response functions (FRFs) obtained by theoretical calculations and the results predicted by simulation experiments were compared to verify the developed model. And stability lobe diagrams (SLDs) and time-domain responses are depicted and analyzed. Furthermore, experiments on tool-tip FRFs and micro-milling were conducted. The results validate the effectiveness of the integrated model, which can calculate the tool-tip FRFs, SLDs, and time responses to analyze chatter stability by considering the centrifugal force, gyroscopic effect, and tool runout.

2.
Micromachines (Basel) ; 15(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38258258

RESUMEN

Vibration-assisted micro milling is a promising technique for fabricating engineered mi-cro-scaled surface textures. This paper presents a novel approach for theoretical modeling of three-dimensional (3D) surface textures produced by vibration-assisted micro milling. The proposed model considers the effects of tool edge geometry, minimum uncut chip thickness (MUCT), and material elastic recovery. The surface texture formation under different machining parameters is simulated and analyzed through mathematical modeling. Two typical surface morphologies can be generated: wave-type and fish scale-type textures, depending on the phase difference between tool paths. A 2-degrees-of-freedom (2-DOF) vibration stage is also developed to provide vibration along the feed and cross-feed directions during micro-milling process. Micro-milling experiments on copper were carried out to verify the ability to fabricate controlled surface textures using the vibration stage. The simulated and experimentally generated surfaces show good agreement in geometry and dimensions. This work provides an accurate analytical model for vibration-assisted micro-milling surface generation and demonstrates its feasibility for efficient, flexible texturing.

3.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630126

RESUMEN

This comprehensive study investigates the micro-milling of a Mg13Sn alloy, a material of considerable interest in various high-precision applications, such as biomedical implants. The main objective of the study was to explore the optimizations of variable feed per tooth (fz), cutting speed (Vc), and depth of cut (ap) parameters on the key outcomes of the micro-milling process. A unique experimental setup was employed, employing a spindle capable of achieving up to 60,000 revolutions per minute. Additionally, the study leveraged linear slides backed by micro-step motors to facilitate precise axis movements, thereby maintaining a resolution accuracy of 0.1 µm. Cutting forces were accurately captured by a mini dynamometer and subsequently evaluated based on the peak to valley values for Fx (tangential force) and Fy (feed force). The study results revealed a clear and complex interplay between the varied cutting parameters and their subsequent impacts on the cutting forces and surface roughness. An increase in feed rate and depth of cut significantly increased the cutting forces. However, the cutting forces were found to decrease noticeably with the elevation of cutting speed. Intriguingly, the tangential force (Fx) was consistently higher than the feed force (Fy). Simultaneously, the study determined that the surface roughness, denoted by Sa values, increased in direct proportion to the feed rate. It was also found that the Sa surface roughness values decreased with the increase in cutting speed. This study recommends a parameter combination of fz = 5 µm/tooth feed rate, Vc = 62.8 m/min cutting speed, and ap = 400 µm depth of cut to maintain a Sa surface roughness value of less than 1 µm while ensuring an optimal material removal rate and machining time. The results derived from this study offer vital insights into the micro-milling of Mg13Sn alloys and contribute to the current body of knowledge on the topic.

4.
Micromachines (Basel) ; 14(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37512733

RESUMEN

This study aims to enhance surgical safety and facilitate patient recovery through the investigation of vibration-assisted micro-milling technology for bone-material removal. The primary objective is to reduce cutting force and improve surface quality. Initially, a predictive model is developed to estimate the cutting force during two-dimensional (2D) vibration-assisted micro-milling of bone material. This model takes into account the anisotropic structural characteristics of bone material and the kinematics of the milling tool. Subsequently, an experimental platform is established to validate the accuracy of the cutting-force model for bone material. Micro-milling experiments are conducted on bone materials, with variations in cutting direction, amplitude, and frequency, to assess their impact on cutting force. The experimental results demonstrate that selecting appropriate machining parameters can effectively minimize cutting force in 2D vibration-assisted micro-milling of bone materials. The insights gained from this study provide valuable guidance for determining cutting parameters in vibration-assisted micro-milling of bone materials.

5.
Micromachines (Basel) ; 14(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37374745

RESUMEN

Selective laser melting (SLM) is a three-dimensional (3D) printing process that can manufacture functional parts with complex geometries as an alternative to using traditional processes, such as machining wrought metal. If precision and a high surface finish are required, particularly for creating miniature channels or geometries smaller than 1 mm, the fabricated parts can be further machined. Therefore, micro milling plays a significant role in the production of such miniscule geometries. This experimental study compares the micro machinability of Ti-6Al-4V (Ti64) parts produced via SLM compared with wrought Ti64. The aim is to investigate the effect of micro milling parameters on the resulting cutting forces (Fx, Fy, and Fz), surface roughness (Ra and Rz), and burr width. In the study, a wide range of feed rates was considered to determine the minimum chip thickness. Additionally, the effects of the depth of cut and spindle speed were observed by taking into account four different parameters. The manufacturing method for the Ti64 alloy does not affect the minimum chip thickness (MCT) and the MCT for both the SLM and wrought is 1 µm/tooth. SLM parts exhibit acicular α martensitic grains, which result in higher hardness and tensile strength. This phenomenon prolongs the transition zone of micro-milling for the formation of minimum chip thickness. Additionally, the average cutting force values for SLM and wrought Ti64 fluctuated between 0.072 N and 1.96 N, depending on the micro milling parameters used. Finally, it is worth noting that micro-milled SLM workpieces exhibit lower areal surface roughness than wrought ones.

6.
Adv Manuf ; 11(2): 222-247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37128239

RESUMEN

The limitations of significant tool wear and tool breakage of commercially available fluted micro-end mill tools often lead to ineffective and inefficient manufacturing, while surface quality and geometric dimensions remain unacceptably poor. This is especially true for machining of difficult-to-machine (DTM) materials, such as super alloys and ceramics. Such conventional fluted micro-tool designs are generally down scaled from the macro-milling tool designs. However, simply scaling such designs from the macro to micro domain leads to inherent design flaws, such as poor tool rigidity, poor tool strength and weak cutting edges, ultimately ending in tool failure. Therefore, in this article a design process is first established to determine optimal micro-end mill tool designs for machining some typical DTM materials commonly used in manufacturing orthopaedic implants and micro-feature moulds. The design process focuses on achieving robust stiffness and mechanical strength to reduce tool wear, avoid tool chipping and tool breakage in order to efficiently machine very hard materials. Then, static stress and deflection finite element analysis (FEA) is carried out to identify stiffness and rigidity of the tool design in relation to the maximum deformations, as well as the Von Mises stress distribution at the cutting edge of the designed tools. Following analysis and further optimisation of the FEA results, a verified optimum tool design is established for micro-milling DTM materials. An experimental study is then carried out to compare the optimum tool design to commercial tools, in regards to cutting forces, tool wear and surface quality.

7.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36984985

RESUMEN

Downsized and complex micro-machining structures have to meet quality requirements concerning geometry and convince through increasing functionality. The development and use of cutting tools in the sub-millimeter range can meet these demands and contribute to the production of intelligent components in biomedical technology, optics or electronics. This article addresses the development of double-edged micro-cutters, which consist of a two-part system of cutter head and shaft. The cutting diameters are between 50 and 200 µm. The silicon carbide cutting heads are manufactured from the solid material using microsystem technology. The substrate used can be structured uniformly via photolithography, which means that 5200 homogeneous micro-milling heads can be produced simultaneously. This novel batch approach represents a contrast to conventionally manufactured micro-milling cutters. The imprint is taken by means of reactive ion etching using a mask made of electroplated nickel. Within this dry etching process, characteristic values such as the etch rate and flank angle of the structures are critical and will be compared in a parameter analysis. At optimal parameters, an anisotropy factor of 0.8 and an etching rate of 0.34 µm/min of the silicon carbide are generated. Finally, the milling heads are diced and joined. In the final machining tests, the functionality is investigated and any signs of wear are evaluated. A tool life of 1500 mm in various materials could be achieved. This and the milling quality achieved are in the range of conventional micro-milling cutters, which gives a positive outlook for further development.

8.
Micromachines (Basel) ; 14(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985022

RESUMEN

Microneedles are gaining a lot of attention in the context of sampling cutaneous biofluids such as capillary blood. Their minimal invasiveness and user-friendliness make them a prominent substitute for venous puncture or finger-pricking. Although the latter is suitable for self-sampling, the impracticality of manual handling and the difficulty of obtaining enough qualitative sample is driving the search for better solutions. In this context, hollow microneedle arrays (HMNAs) are particularly interesting for completely integrating sample-to-answer solutions as they create a duct between the skin and the sampling device. However, the fabrication of sharp-tipped HMNAs with a high aspect ratio (AR) is challenging, especially since a length of ≥1500 µm is desired to reach the blood capillaries. In this paper, we first described a novel two-step fabrication protocol for HMNAs in stainless steel by percussion laser drilling and subsequent micro-milling. The HMNAs were then integrated into a self-powered microfluidic sampling patch, containing a capillary pump which was optimized to generate negative pressure differences up to 40.9 ± 1.8 kPa. The sampling patch was validated in vitro, showing the feasibility of sampling 40 µL of liquid. It is anticipated that our proof-of-concept is a starting point for more sophisticated all-in-one biofluid sampling and point-of-care testing systems.

9.
Micromachines (Basel) ; 14(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985038

RESUMEN

The vibration of the micro-milling tool presents a significant chaotic vibration phenomenon, which has a great influence on the tool life and part machining precision, and is one of the basic problems restricting the improvement of machining efficiency and machining accuracy in micro-milling. To overcome the difficulty of the traditional vibration measurement method with the online measurement of micro-milling tool multi-dimensional vibration, a three-dimensional (3D) measurement method of the micro-milling tool is proposed based on multi-fiber array coding, which converts the tool space motion into a decoding process of the optical coding array employing the tool modulating the multi-fiber array encoding. A 6 × 6 optical fiber array was designed, and a 3D motion platform for micro-milling tools was built to verify the characteristics of the optical fiber measurement system. The measurement results show that the measuring accuracy of the system reached 1 µm, and the maximum linear error in x-, y-, and z-direction are 1.5%, 2.58%, and 2.43%, respectively; the tool space motion position measurement results show that the maximum measurement error of the measuring system was 3.4%. The designed system has unique coding characteristics for the tool position in the space of 100 µm3. It provides a new idea and realization means for the online vibration measurement of micro-milling tools.

10.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36502120

RESUMEN

Angiogenesis is the development of new blood vessels from the existing vasculature. Its malfunction leads to the development of cancers and cardiovascular diseases qualified by the WHO as a leading cause of death worldwide. A better understanding of mechanisms regulating physiological and pathological angiogenesis will potentially contribute to developing more effective treatments for those urgent issues. Therefore, the main goal of the following study was to design and manufacture an angiogenesis-on-a-chip microplatform, including cylindrical microvessels created by Viscous Finger Patterning (VFP) technique and seeded with HUVECs. While optimizing the VFP procedure, we have observed that lumen's diameter decreases with a diminution of the droplet's volume. The influence of Vascular Endothelial Growth Factor (VEGF) with a concentration of 5, 25, 50, and 100 ng/mL on the migration of HUVECs was assessed. VEGF's solution with concentrations varying from 5 to 50 ng/mL reveals high angiogenic potential. The spatial arrangement of cells and their morphology were visualized by fluorescence and confocal microscopy. Migration of HUVECs toward loaded angiogenic stimuli has been initiated after overnight incubation. This research is the basis for developing more complex vascularized multi-organ-on-a-chip microsystems that could potentially be used for drug screening.


Asunto(s)
Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular , Humanos , Neovascularización Fisiológica/fisiología , Células Endoteliales de la Vena Umbilical Humana , Microvasos
11.
Materials (Basel) ; 15(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36362999

RESUMEN

When serving in extremely high-power laser conditions, KH2PO4 (KDP) surfaces are susceptible to incur laser damage points (also known as defects). Using micro-ball end milling cutters to repair and remove the pre-existing damage points on the flawed KDP crystal surface is the most effective method to control the growth of laser damage points on KDP crystal surfaces and prolong their service life. However, there are various forms of micro-defects (such as pits, scratches and brittle fractures) around the laser damage points on KDP crystal surfaces which possess remarkable effects on the micro-milling repair process and consequently deteriorate the repair quality. In this work, combined with nano-indentation experiments, elastic-plastic mechanics and fracture mechanics theory, a constitutive model considering the anisotropic property of KDP crystals and a three-dimensional (3D) finite element model (FEM) were established to simulate the cutting force and surface topography involved in the ball-end milling repairing of flawed KDP crystal surfaces. Besides, the micro-milling experiments were conducted to evaluate the change of cutting force and machined surface quality in the presence of micro-defects with various feed rates. The results show that micro-defects would induce the fluctuation of cutting force and a change of the undeformed cutting thickness (UCT) in the process of repairing the damage points on the crystal surface, which would lead to the brittle-ductile transition (BDT) and affect the machined surface quality. The machined surface quality was found to be deteriorated by the pre-existing micro-defects when the UCT was small (the UCT was less than 375 nm). On the contrary, brittle mode cutting in the local area can be transformed into ductile mode cutting, resulting in an improvement of repaired surface quality that is exhibited by the cutting force and microtopography. This work has great theoretical significance and engineering practical value for the promotion and application of micro-milling repairing technology in the practical manufacturing and operation of KDP optics applied to high-power laser systems.

12.
Micromachines (Basel) ; 13(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36014199

RESUMEN

The objective of the present work is to carry out analytical and finite element analysis for commonly used coating materials for micro-milling applications on high-speed steel substrate and evaluate the effects of different parameters. Four different coating materials were selected for micro-milling applications: titanium nitride (TiN), diamond-like carbon (DLC), aluminium titanium nitride (AlTiN) and titanium silicon nitride (TiSiN). A 3D finite element model of coating and substrate assembly was developed in Abaqus to find the Hertzian normal stress when subjected to normal load of 4 N, applied with the help of a rigid ball. The radius of the rigid ball was 200 µm. For all the coating materials, the length was 3 mm, the width was 1 mm, and the thickness was 3 µm. For the high-speed steel substrate, the length was 3 mm, the width was 1 mm, and the thickness was 50 µm. Along the length and width, coating and substrate both were divided into 26 equal parts. The deformation behaviour of all the coating materials was considered as linear-elastic and that of the substrate was characterized as elastic-plastic. The maximum normal stress developed in the FEA model was 12,109 MPa. The variation of the FEA result from the analytical result (i.e., 12,435.97 MPa is 2.63%) which is acceptable. This confirms that the FEA model of coating-substrate assembly is acceptable. The results shows that the TiSiN coating shows least plastic equivalent strain in the substrate, which serves the purpose of protecting the substrate from plastic deformation and the TiSiN of 3 micron thickness is the most optimum coating thickness for micro-milling applications.

13.
Biosensors (Basel) ; 12(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36004984

RESUMEN

This paper shows both experimental and in-depth theoretical studies (including simulations and analytical solutions) on a microfluidic platform to optimize its design and use for 3D multicellular co-culture applications, e.g., creating a tissue-on-chip model for investigating diseases such as pulmonary arterial hypertension (PAH). A tissue microfluidic chip usually has more than two channels to seed cells and supply media. These channels are often separated by barriers made of micro-posts. The optimization for the structures of these micro-posts and their spacing distances is not considered previously, especially for the aspects of rapid and cost-efficient fabrication toward scaling up and commercialization. Our experimental and theoretical (COMSOL simulations and analytical solutions) results showed the followings: (i) The cell seeding was performed successfully for this platform when the pressure drops across the two posts were significantly larger than those across the channel width. The circular posts can be used in the position of hexagonal or other shapes. (ii) In this work, circular posts are fabricated and used for the first time. They offer an excellent barrier effect, i.e., prevent the liquid and gel from migrating from one channel to another. (iii) As for rapid and cost-efficient production, our computer-aided manufacturing (CAM) simulation confirms that circular-post fabrication is much easier and more rapid than hexagonal posts when utilizing micro-machining techniques, e.g., micro-milling for creating the master mold, i.e., the shim for polymer injection molding. The findings open up a possibility for rapid, cost-efficient, large-scale fabrication of the tissue chips using micro-milling instead of expensive clean-room (soft) lithography techniques, hence enhancing the production of biochips via thermoplastic polymer injection molding and realizing commercialization.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Técnicas de Cocultivo , Microfluídica/métodos , Polímeros/química , Impresión/métodos
14.
Micromachines (Basel) ; 13(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744558

RESUMEN

Mechanistic cutting force model has the potential for monitoring micro-milling tool wear. However, the existing studies mainly consider the linear cutting force model, and they are incompetent to monitor the micro-milling tool wear which has a significant nonlinear effect on the cutting force due to the cutting-edge radius size effect. In this study, a nonlinear mechanistic cutting force model considering the comprehensive effect of cutting-edge radius and tool wear on the micro-milling force is constructed for micro-milling tool wear monitoring. A stepwise offline optimization approach is proposed to estimate the multiple parameters of the model. By minimizing the gap between the theoretical force expressed by the nonlinear model and the force measured in real-time, the tool wear condition is online monitored. Experiments show that, compared with the linear model, the nonlinear model has significantly improved cutting force prediction accuracy and tool wear monitoring accuracy.

15.
HardwareX ; 11: e00269, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35509945

RESUMEN

Tool detachment during the machining process is often required by many image-based tool wear monitoring (TWM) systems. Tool detachment prevents the online mode of the wear measurement, extends the machining time, and contributes to measurement inaccuracy. Other alternatives of the image-based TWM systems have been developed with the image-acquisition device located statically near the tool position without the requirement for the tool detachment. However, due to its proximity to the machining site, the image-acquisition device may experience obstruction from the workpiece chips and the splash of coolant fluid during the machining process, resulting in non-optimal TWM. This article presents MicroEye - an online image-based TWM system with modular 3D-printed components to overcome the two problems. MicroEye offers great flexibility in its operation through the use of an active 6-DOF (degree of freedom) robotics arm with a camera at the end-effector. MicroEye does not require tool detachment to perform tool wear monitoring and can be safely placed outside the machining area. MicroEye is the first open-sourced, 3D-printed components and active dynamic-type TWM system for the application of micro-milling. MicroEye can be built at a low-cost (approximately US$ 872, including the camera). MicroEye is suitable for various micro-milling sites, from laboratory scale to middle-low workshop.

16.
Materials (Basel) ; 15(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35629597

RESUMEN

Aluminum alloy (Al6061-T6) is an alloy with strong corrosion resistance, excellent disassembly, and moderate strength, which is widely used in the fields of construction, automobile, shipping, and aerospace manufacturing. Researching on the influence of machining precision and surface quality on the micro-milling process of thin-walled structures of Al6061 is highly significant. Combined with the two simulations (DEFORM-3D simulation and interactive finite element numerical simulation (FEM)) and milling experimental verification, the deformations, errors, and surface quality of milling thin-walled Al6061 were analyzed. The simulations and experimental results show that the deformation of milling a micro thin-walled structure was caused by the vertical stiffness of the thin-walled structure and the cutting force. Surface micromorphology further characterized and showed a poorer quality area, top burr, and concave defects, which directly affect machining quality. It is necessary to improve the surface quality, reduce the surface defects, and increase the stiffness at the top of thin-walled structures in future work.

17.
Micromachines (Basel) ; 14(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36677073

RESUMEN

Super alloys offer excellent mechanical and chemical properties at elevated temperatures that make them an attractive choice for aerospace, automotive and chemical processing, and marine applications. These alloys are, however, difficult to machine due to their high strength at elevated temperatures, low thermal conductivity and work hardening. In this study, micro milling of Inconel 600 super alloy has been carried out and the effects of the key input parameters (cutting speed, feed rate, depth of cut) on response parameters (burr formation, surface roughness and tool wear), under various cooling conditions (dry, wet and cryogenic), have been analyzed. High speed micro milling (range up to 80,000 RPM) was carried out, while keeping the feed rate values below and above the cutting edge radius. The Taguchi design of experiments was used during this study. The results have been analyzed using SEM and 3D optical microscopy. Analysis of Variance (ANOVA) revealed that the best surface roughness values can be achieved under cryogenic machining condition with an overall contribution ratio of 28.69%. It was also revealed that cryogenic cooling resulted in the highest tool life with the contribution ratio of cooling conditions at 26.52%.

18.
Micromachines (Basel) ; 14(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36677161

RESUMEN

Most in situ tool wear monitoring methods during micro end milling rely on signals captured from the machining process to evaluate tool wear behavior; accurate positioning in the tool wear region and direct measurement of the level of wear are difficult to achieve. In this paper, an in situ monitoring system based on machine vision is designed and established to monitor tool wear behavior in micro end milling of titanium alloy Ti6Al4V. Meanwhile, types of tool wear zones during micro end milling are discussed and analyzed to obtain indicators for evaluating wear behavior. Aiming to measure such indicators, this study proposes image processing algorithms. Furthermore, the accuracy and reliability of these algorithms are verified by processing the template image of tool wear gathered during the experiment. Finally, a micro end milling experiment is performed with the verified micro end milling tool and the main wear type of the tool is understood via in-situ tool wear detection. Analyzing the measurement results of evaluation indicators of wear behavior shows the relationship between the level of wear and varying cutting time; it also gives the main influencing reasons that cause the change in each wear evaluation indicator.

19.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34945345

RESUMEN

The minimum uncut chip thickness (MUCT), dividing the cutting zone into the shear region and the ploughing region, has a strong nonlinear effect on the cutting force of micro-milling. Determining the MUCT value is fundamental in order to predict the micro-milling force. In this study, based on the assumption that the normal shear force and the normal ploughing force are equivalent at the MUCT point, a novel analytical MUCT model considering the comprehensive effect of shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed to determine the MUCT. Nonlinear piecewise cutting force coefficient functions with the novel MUCT as the break point are constructed to represent the distribution of the shear/ploughing force under the effect of the minimum uncut chip thickness. By integrating the cutting force coefficient function, the nonlinear micro-milling force is predicted. Theoretical analysis shows that the nonlinear cutting force coefficient function embedded with the novel MUCT is absolutely integrable, making the micro-milling force model more stable and accurate than the conventional models. Moreover, by considering different factors in the MUCT model, the proposed micro-milling force model is more flexible than the traditional models. Micro-milling experiments under different cutting conditions have verified the efficiency and improvement of the proposed micro-milling force model.

20.
Adv Manuf ; 9(2): 173-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777895

RESUMEN

Micro-milling is a precision manufacturing process with broad applications across the biomedical, electronics, aerospace, and aeronautical industries owing to its versatility, capability, economy, and efficiency in a wide range of materials. In particular, the micro-milling process is highly suitable for very precise and accurate machining of mold prototypes with high aspect ratios in the microdomain, as well as for rapid micro-texturing and micro-patterning, which will have great importance in the near future in bio-implant manufacturing. This is particularly true for machining of typical difficult-to-machine materials commonly found in both the mold and orthopedic implant industries. However, inherent physical process constraints of machining arise as macro-milling is scaled down to the microdomain. This leads to some physical phenomena during micro-milling such as chip formation, size effect, and process instabilities. These dynamic physical process phenomena are introduced and discussed in detail. It is important to remember that these phenomena have multifactor effects during micro-milling, which must be taken into consideration to maximize the performance of the process. The most recent research on the micro-milling process inputs is discussed in detail from a process output perspective to determine how the process as a whole can be improved. Additionally, newly developed processes that combine conventional micro-milling with other technologies, which have great prospects in reducing the issues related to the physical process phenomena, are also introduced. Finally, the major applications of this versatile precision machining process are discussed with important insights into how the application range may be further broadened.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA