Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(34): 23047-23057, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39137334

RESUMEN

A long-standing goal in colloidal active matter is to understand how gradients in fuel concentration influence the motion of phoretic Janus particles. Here, we present a theoretical description of the motion of a spherical phoretic Janus particle in the presence of a radial gradient of the chemical solute driving self-propulsion. Radial gradients are a geometry relevant to many scenarios in active matter systems and naturally arise due to the presence of a point source or sink of fuel. We derive an analytical solution for the Janus particle's velocity and quantify the influence of the radial concentration gradient on the particle's trajectory. Compared to a phoretic Janus particle in a linear gradient in fuel concentration, we uncover a much richer set of dynamic behaviors including circular orbits and trapped stationary states. We identify the ratio of the phoretic mobilities between the two domains of the Janus particle as a central quantity in tuning their dynamics. Our results provide a path for developing optimum protocols for tuning the dynamics of phoretic Janus particles and mixing fluid at the microscale. In addition, this work suggests a method for quantifying the surface properties of phoretic Janus particles, which have proven to be challenging to probe experimentally.

2.
ChemMedChem ; : e202400349, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965060

RESUMEN

Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.

3.
Angew Chem Int Ed Engl ; 63(16): e202401209, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400604

RESUMEN

Self-propelled micro/nanomotors (MNMs) have shown great application potential in biomedicine, sensing, environmental remediation, etc. In the past decade, various strategies or technologies have been used to prepare and functionalize MNMs. However, the current preparation strategies of the MNMs were mainly following the pre-designed methods based on specific tasks to introduce expected functional parts on the various micro/nanocarriers, which lacks a universal platform and common features, making it difficult to apply to different application scenarios. Here, we have developed a modular assembly strategy based on host-guest chemistry, which enables the on-demand construction of imaging-trackable nanomotors mounted with suitable driving and imaging modules using a universal assembly platform, according to different application scenarios. These assembled nanomotors exhibited enhanced diffusion behavior driven by enzymatic reactions. The loaded imaging functions were used to dynamically trace the swarm motion behavior of assembled nanomotors with corresponding fuel conditions both in vitro and in vivo. The modular assembly strategy endowed with host-guest interaction provides a universal approach to producing multifunctional MNMs in a facile and controllable manner, which paves the way for the future development of MNMs systems with programmable functions.


Asunto(s)
Restauración y Remediación Ambiental , Nanoestructuras , Nanotecnología/métodos , Nanoestructuras/química
4.
J Hazard Mater ; 467: 133654, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341894

RESUMEN

Self-propelled micro/nanomotors have attracted great attention for environmental remediation, however, their use for radioactive waste detection and removal has not been addressed. Engineered micromotors that are able to combine fast detection and highly adsorptive capability are promising tools for radioactive waste management but remain challenging. Herein, we design self-propelled micromotors based on zeolite imidazolate framework (ZIF-8)-hydrogel composites via inverse emulsion polymerization and show their potential for efficient uranium detection and removal. The incorporation of magnetic ferroferric oxide nanoparticles enables the magnetic recycling and actuation of the single micromotors as well as formation of swarms of worm-like or tank-treading structure. Benefited from the enhanced motion, the micromotors show fast and high-capacity uranium adsorption (747.3 mg g-1), as well as fast uranium detection based on fluorescence quenching. DFT calculation confirms the strong binding between carboxyl groups and uranyl ions. The combination of poly(acrylic acid-co-acrylamide) with ZIF-8 greatly enhances the fluorescence of the micromotor, facilitating the high-resolution fluorescence detection. A low detection limit of 250 ppb is reached by the micromotors. Such self-propelled micromotors provide a new strategy for the design of smart materials in remediation of radioactive wastewater.

5.
Theranostics ; 14(3): 1029-1048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250044

RESUMEN

Bacterial infections remain a formidable threat to human health, a situation exacerbated by the escalating problem of antibiotic resistance. While alternative antibacterial strategies such as oxidants, heat treatments, and metal nanoparticles (NPs) have shown potential, they come with significant drawbacks, ranging from non-specificity to potential environmental concerns. In the face of these challenges, the rapid evolution of micro/nanomotors (MNMs) stands out as a revolutionary development in the antimicrobial arena. MNMs harness various forms of energy and convert it into a substantial driving force, offering bright prospects for combating microbial threats. MNMs' mobility allows for swift and targeted interaction with bacteria, which not only improves the carrying potential of therapeutic agents but also narrows the required activation range for non-drug antimicrobial interventions like photothermal and photodynamic therapies, substantially improving their bacterial clearance rates. In this review, we summarized the diverse propulsion mechanisms of MNMs employed in antimicrobial applications and articulated their multiple functions, which include direct bactericidal action, capture and removal of microorganisms, detoxification processes, and the innovative detection of bacteria and associated toxins. Despite MNMs' potential to revolutionize antibacterial research, the translation from laboratory to clinical use remains challenging. Based on the current research status, we summarized the potential challenges and possible solutions and also prospected several key directions for future studies of MNMs for antimicrobial purposes. Collectively, by highlighting the important knowns and unknowns of antimicrobial MNMs, our present review would help to light the way forward for the field of antimicrobial MNMs and prevent unnecessary blindness and detours.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceguera , Tasa de Depuración Metabólica
6.
Small ; 20(6): e2306191, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775935

RESUMEN

In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.


Asunto(s)
Nanoestructuras , Nanotecnología , Animales , Nanotecnología/métodos , Nanoestructuras/química , Quimiotaxis
7.
Acta Biomater ; 173: 1-35, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967696

RESUMEN

Micro/nanomotors (MNMs) that accomplish autonomous movement by transforming external energy into mechanical work are attractive cargo delivery vehicles. Among various propulsion mechanisms of MNMs, photothermal propulsion has gained considerable attention because of their unique advantages, such as remote, flexible, accurate, biocompatible, short response time, etc. Moreover, besides as a propulsion source, the light has been extensively investigated as an excitation source in bioimaging, photothermal therapy (PTT), photodynamic therapy (PDT) and so on. Furthermore, the geometric topology and morphology of MNMs have a tremendous impact on improving their performance in motion behavior under NIR light propulsion, environmental suitability and functional versatility. Hence, this review article provides a comprehensive overview of structural design principles and construction strategies of photothermal-driven MNMs, and their emerging nanobiomedical applications. Finally, we further provide an outlook towards prospects and challenges during the development of photothermal-driven MNMs in the future. STATEMENT OF SIGNIFICANCE: Photothermal-driven micro/nanomotors (MNMs) that are regarded as functional cargo delivery tools have gained considerable attention because of unique advantages in propulsion mechanisms, such as remote, flexible, accurate and fully biocompatible light manipulation and extremely short light response time. The geometric topology and morphology of MNMs have a tremendous impact on improving their performance in motion behavior under NIR light propulsion, environmental suitability and functional versatility of MNMs. There are no reports about the review focusing on photothermal-driven MNMs up to now. Herein, we systematically review the latest progress of photothermal-driven MNMs including design principle, fabrication strategy of various MNMs with different structures and nanobiomedical applications. Moreover, the summary and outlook on the development prospects and challenges of photothermal-driven MNMs are proposed, hoping to provide new ideas for the future design of photothermal-driven MNMs with efficient propulsion, multiple functions and high biocompatibility.


Asunto(s)
Nanoestructuras , Nanotecnología , Nanotecnología/métodos , Nanoestructuras/química , Movimiento
8.
Chem Asian J ; 19(2): e202300900, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37990785

RESUMEN

Enzyme-powered micro/nanomotors that can autonomously move in biological environment are attractive in the fields of biology and biomedicine. The fabrication of enzyme-powered micro/nanomotors normally focuses on constructing Janus structures of micro/nanomaterials, based on the intuition that the Janus coating of enzymes can generate driving force from asymmetric catalytic reactions. Here, in the fabrication of catalase-powered silica micro/nanomotors (C-MNMs), an archetypical model of enzyme-powered micro/nanomotors, we find the silica size rather than asymmetric coating of catalase determines the motion ability of C-MNMs. The effects of size and asymmetry have been investigated by a series of C-MNMs at various sizes (0.5, 2, 5 and 10 µm) and asymmetric levels (full-, half- and most-coated with catalase). The motion performance indicates that 500 nm and 2 µm C-MNMs show obvious increases (varying from 134% to 618%) of diffusion coefficient, but C-MNMs bigger than 5 µm have no self-propulsion behaviour at all, regardless of asymmetric levels. In addition, although asymmetry facilitates enhanced diffusion of C-MNMs, only 2 µm C-MNMs are sensitive to asymmetric level. This work elucidates the primary and secondary roles of size and asymmetry in the preparation of C-MNMs, paving the way to fabricate enzyme-powered micro/nanomotors with high motion performance in future.


Asunto(s)
Nanoestructuras , Nanotecnología , Catalasa , Dióxido de Silicio , Nanoestructuras/química
9.
Front Bioeng Biotechnol ; 11: 1276485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929199

RESUMEN

Acoustic manipulation techniques have gained significant attention across various fields, particularly in medical diagnosis and biochemical research, due to their biocompatibility and non-contact operation. In this article, we review the broad range of biomedical applications of micro/nano-motors that use acoustic manipulation methods, with a specific focus on cell manipulation, targeted drug release for cancer treatment and genetic disease diagnosis. These applications are facilitated by acoustic-propelled micro/nano-motors and nanoparticles which are manipulated by acoustic tweezers. Acoustic systems enable high precision positioning and can be effectively combined with magnetic manipulation techniques. Furthermore, acoustic propulsion facilitates faster transportation speeds, making it suitable for tasks in blood flow, allowing for precise positioning and in-body manipulation of cells, microprobes, and drugs. By summarizing and understanding these acoustic manipulation methods, this review aims to provide a summary and discussion of the acoustic manipulation methods for biomedical research, diagnostic, and therapeutic applications.

10.
J Nanobiotechnology ; 21(1): 388, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875896

RESUMEN

Multi-drug resistant (MDR) bacterial infections are gradually increasing in the global scope, causing a serious burden to patients and society. The formation of bacterial biofilms, which is one of the key reasons for antibiotic resistance, blocks antibiotic penetration by forming a physical barrier. Nano/micro motors (MNMs) are micro-/nanoscale devices capable of performing complex tasks in the bacterial microenvironment by transforming various energy sources (including chemical fuels or external physical fields) into mechanical motion or actuation. This autonomous movement provides significant advantages in breaking through biological barriers and accelerating drug diffusion. In recent years, MNMs with high penetrating power have been used as carriers of antibiotics to overcome bacterial biofilms, enabling efficient drug delivery and improving the therapeutic effectiveness of MDR bacterial infections. Additionally, non-antibiotic antibacterial strategies based on nanomaterials, such as photothermal therapy and photodynamic therapy, are continuously being developed due to their non-invasive nature, high effectiveness, and non-induction of resistance. Therefore, multifunctional MNMs have broad prospects in the treatment of MDR bacterial infections. This review discusses the performance of MNMs in the breakthrough and elimination of bacterial biofilms, as well as their application in the field of anti-infection. Finally, the challenges and future development directions of antibacterial MNMs are introduced.


Asunto(s)
Infecciones Bacterianas , Nanoestructuras , Humanos , Nanotecnología , Antibacterianos/farmacología , Bacterias , Biopelículas
11.
J Control Release ; 360: 514-527, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429360

RESUMEN

Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanotecnología , Humanos , Tracto Gastrointestinal , Administración Oral
12.
Small Methods ; 7(10): e2300426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37391275

RESUMEN

Cardiovascular and cerebrovascular diseases (CCVDs) are two major vasculature-related diseases that seriously affect public health worldwide, which can cause serious death and disability. Lack of targeting effect of the traditional CCVD treatment drugs may damage other tissues and organs, thus more specific methods are needed to solve this dilemma. Micro/nanomotors are new materials that can convert external energy into driving force for autonomous movement, which can not only enhance the penetration depth and retention rates, but also increase the contact areas with the lesion sites (such as thrombus and inflammation sites of blood vessels). Physical field-regulated micro/nanomotors using the physical energy sources with deep tissue penetration and controllable performance, such as magnetic field, light, and ultrasound, etc. are considered as the emerging patient-friendly and effective therapeutic tools to overcome the limitations of conventional CCVD treatments. Recent efforts have suggested that physical field-regulated micro/nanomotors on CCVD treatments could simultaneously provide efficient therapeutic effect and intelligent control. In this review, various physical field-driven micro/nanomotors are mainly introduced and their latest advances for CCVDs are highlighted. Last, the remaining challenges and future perspectives regarding the physical field-regulated micro/nanomotors for CCVD treatments are discussed and outlined.


Asunto(s)
Enfermedades Cardiovasculares , Trastornos Cerebrovasculares , Nanoestructuras , Humanos , Nanotecnología/métodos , Nanoestructuras/uso terapéutico , Trastornos Cerebrovasculares/terapia , Enfermedades Cardiovasculares/terapia , Movimiento
13.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37242005

RESUMEN

During recent years, microrobots have drawn extensive attention owing to their good controllability and great potential in biomedicine. Powered by external physical fields or chemical reactions, these untethered microdevices are promising candidates for in vivo complex tasks, such as targeted delivery, imaging and sensing, tissue engineering, hyperthermia, and assisted fertilization, among others. However, in clinical use, the biodegradability of microrobots is significant for avoiding toxic residue in the human body. The selection of biodegradable materials and the corresponding in vivo environment needed for degradation are increasingly receiving attention in this regard. This review aims at analyzing different types of biodegradable microrobots by critically discussing their advantages and limitations. The chemical degradation mechanisms behind biodegradable microrobots and their typical applications are also thoroughly investigated. Furthermore, we examine their feasibility and deal with the in vivo suitability of different biodegradable microrobots in terms of their degradation mechanisms; pathological environments; and corresponding biomedical applications, especially targeted delivery. Ultimately, we highlight the prevailing obstacles and perspective solutions, ranging from their manufacturing methods, control of movement, and degradation rate to insufficient and limited in vivo tests, that could be of benefit to forthcoming clinical applications.

14.
Nanomicro Lett ; 15(1): 20, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580129

RESUMEN

Due to their tiny size, autonomous motion and functionalize modifications, micro/nanomotors have shown great potential for environmental remediation, biomedicine and micro/nano-engineering. One-dimensional (1D) micro/nanomotors combine the characteristics of anisotropy and large aspect ratio of 1D materials with the advantages of functionalization and autonomous motion of micro/nanomotors for revolutionary applications. In this review, we discuss current research progress on 1D micro/nanomotors, including the fabrication methods, driving mechanisms, and recent advances in environmental remediation and biomedical applications, as well as discuss current challenges and possible solutions. With continuous attention and innovation, the advancement of 1D micro/nanomotors will pave the way for the continued development of the micro/nanomotor field.

15.
ACS Appl Mater Interfaces ; 14(43): 48967-48975, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36278865

RESUMEN

Here, we report the first PbS quantum dot (QD)-based micromotors with NIR-I light-driven photocatalytic propulsion and NIR-II fluorescence. Under the irradiation of NIR-I light (808 nm), PbS QD-doped cuprous oxide (Cu2O@PbS) micromotors can display efficient propulsion in a variety of biocompatible fuels such as malic acid, glucose, and urea. Among them, the Cu2O@PbS micromotors exhibit the best propulsion performance in a very low concentration of malic acid, with an average speed as high as 11.86 µm/s. The enhanced NIR-I photocatalytic activity of Cu2O@PbS micromotors benefits from the doping of NIR-I PbS QDs that can be excited by NIR-I light and exhibit high electron transport efficiency. The doped PbS QDs can effectively increase the absorption efficiency of the micromotors in the NIR-I region while also inhibiting the recombination of photogenerated electron-hole pairs. Interestingly, due to the presence of NIR PbS QDs, the Cu2O@PbS micromotors demonstrate prominent and stable NIR-II fluorescence (emission wavelength: 1100 nm), which offer promising potential for visualization of their position in vivo. In comparison to other photocatalytic micromotors, the simple fabrication strategy, excellent NIR-II fluorescence, together with the NIR-I light-dependent propulsion behavior of the current Cu2O@PbS micromotors, thus pave the way for further development of advanced smart "robots" for intelligent biomedical applications.


Asunto(s)
Puntos Cuánticos , Fluorescencia , Malatos , Transporte de Electrón
16.
Front Bioeng Biotechnol ; 10: 1002171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185435

RESUMEN

Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.

17.
Adv Sci (Weinh) ; 9(28): e2203057, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35957518

RESUMEN

Mass transfer is an essential factor determining photocatalytic performance, which can be modulated by fluid field via manipulating the kinetic characteristics of photocatalysts and photocatalytic intermediates. Past decades have witnessed the efforts and achievements made in manipulating mass transfer based on photocatalyst structure and composition design, and thus, a critical survey that scrutinizes the recent progress in this topic is urgently necessitated. This review examines the basic principles of how mass transfer behavior impacts photocatalytic activity accompanying with the discussion on theoretical simulation calculation including fluid flow speed and pattern. Meanwhile, newly emerged viable photocatalytic micro/nanomotors with self-thermophoresis, self-diffusiophoresis, and bubble-propulsion mechanisms as well as magnet-actuated photocatalytic artificial cilia for facilitating mass transfer will be covered. Furthermore, their applications in photocatalytic hydrogen evolution, carbon dioxide reduction, organic pollution degradation, bacteria disinfection and so forth are scrutinized. Finally, a brief summary and future outlook are presented, providing a viable guideline to those working in photocatalysis, mass transfer, and other related fields.


Asunto(s)
Dióxido de Carbono , Desinfección , Bacterias , Catálisis , Hidrógeno
18.
Biomaterials ; 288: 121744, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35999081

RESUMEN

While the miniaturization and motility of artificial nanomotors made them popular tools for exploring novel and innovative biomedical cancer treatment strategies, the integration of multiple functions on the small motor bodies is key to achieve further progress but remains unresolved. Here, we propose a dual-source powered Janus nanomotor whose composition integrates multiple photo-theranostic functions such as surface-enhanced Raman scattering (SERS) sensing, fluorescence imaging/photoacoustic imaging (PAI), photodynamic therapy (PDT), and photothermal therapy (PTT). This nanomotor can be fabricated by sputtering a thin gold layer onto one side of mesoporous silica (mSiO2) combined with surface modification by photo-sensitizer, Raman reporter, and catalase. Upon illumination with 808 nm near-infrared light, the half-coated gold nanoshell serves as PAI/PTT agent, and by upconverting NIR to visible light, the pre-loaded photosensitizer can be excited by the upconverted light of UCNPs to convert the dissolved oxygen (O2) into reactive oxygen species for efficient PDT. Furthermore, ratiometric SERS signal can be captured to quantitatively detect the tumor marker, H2O2, in cellular microenvironments. The immobilized catalase as a nano-engine can catalyze endogenous H2O2 to O2. This function not only improves the hypoxic tumor microenvironment and therefore enhances PDT efficiency, but also provides a thrust force for deep penetration. As a proof of concept for the in vivo trial we performed cancer photo-theranostics where our nanomotors successfully treated a mouse breast tumor in a subcutaneous tumor model. The results are promising and encourage the use of an integrated nanomotor platform that could be further developed into a photo-theranostic agent for superficial cancer treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Animales , Catalasa/uso terapéutico , Línea Celular Tumoral , Oro/uso terapéutico , Peróxido de Hidrógeno/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
19.
Small ; 18(30): e2201417, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35801427

RESUMEN

Plants are anatomically and physiologically different from humans and animals; however, there are several possibilities to utilize the unique structures and physiological systems of plants and adapt them to new emerging technologies through a strategic biomimetic approach. Moreover, plants provide safe and sustainable results that can potentially solve the problem of mass-producing practical materials with hazardous and toxic side effects, particularly in the biomedical field, which requires high biocompatibility. In this review, it is investigated how micro-nanostructures available in plants (e.g., nanoparticles, nanofibers and their composites, nanoporous materials, and natural micromotors) are adapted and utilized in the design of suitable materials for a micro-nanorobot platform. How plants' work on micro- and nanoscale systems (e.g., surface roughness, osmotically induced movements such as nastic and tropic, and energy conversion and harvesting) that are unique to plants, can provide functionality on the platform and become further prospective resources are examined. Furthermore, implementation across organisms and fields, which is promising for future practical applications of the plant-actuated micro-nanorobot platform, especially on biomedical applications, is discussed. Finally, the challenges following its implementation in the micro-nanorobot platform are also presented to provide advanced adaptation in the future.


Asunto(s)
Nanopartículas , Nanoestructuras , Animales , Biomimética , Humanos , Nanoestructuras/química , Nanotecnología/métodos
20.
Chem Asian J ; 17(16): e202200498, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35676200

RESUMEN

The incidence and lethal rate of cancers are rapidly rising recently, however current treatments of cancers, such as surgical resection, radiotherapy, chemotherapy and targeted therapy, usually require long treatment period and have more side effects and high recurrence rate. Enzyme-powered micro/nanomotors (EMNMs), with powerful self-propulsion, enhanced permeability and good biocompatibility, have shown great potential in crossing biological barrier and targeted drug transportation for cancer treatment; moreover, advanced approaches based on EMNMs such as photothermal therapy and starvation therapy have also been widely explored in cancer treatment. Although there are several review works discussing the progress of micro/nanomotors for biomedical applications, there is not one review paper with the focus on the cancer treatment based on EMNMs. Therefore, in this review, we try to concisely and timely summarize the recent progress of cancer treatment based on enzyme-driven micro/nanomotors, such as brain tumors, bladder cancer, breast cancer and others. Finally, the challenges and outlook of cancer therapy based on EMNMs are discussed, hoping to provide fundamental guidance for the future development.


Asunto(s)
Nanoestructuras , Neoplasias , Sistemas de Liberación de Medicamentos , Nanoestructuras/uso terapéutico , Nanotecnología , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA