Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Mol Biol Rep ; 51(1): 953, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230767

RESUMEN

BACKGROUND: Atherosclerosis, serving as the primary pathological mechanism at the core of cardiovascular disease, is now widely acknowledged to be associated with DNA damage and repair, contributing to atherosclerotic plaque formation. Therefore, molecules involved in the DNA repair process may play an important role in the progression of atherosclerosis. Our research endeavors to explore the contributions of specific and interrelated molecules involved in DNA repair (APE1, BRCA1, ERCC2, miR-221-3p, miR-145-5p, and miR-155-5p) to the development of atherosclerotic plaque and their interactions with each other. METHODS & RESULTS: Gene expression study was conducted using the real-time polymerase chain reaction (qRT-PCR) method on samples from carotid artery atherosclerotic plaques and nonatherosclerotic internal mammary arteries obtained from 50 patients diagnosed with coronary artery disease and carotid artery disease. Additionally, 50 healthy controls were included for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Although no difference was observed in mRNA gene expressions, we noted a decrease in miR-155-5p gene expression (p = 0.003) and an increase in miR-221-3p gene expression (p = 0.015) in plaque samples, while miR-145-5p gene expression remained unchanged (p = 0.57). Regarding serum 8-OHdG levels, patients exhibited significantly higher levels (1111.82 ± 28.64) compared to controls (636.23 ± 24.23) (p < 0.0001). CONCLUSIONS: In our study demonstrating the role of miR-155-5p and miR-221-3p in atherosclerosis, we propose that these molecules are potential biomarkers and therapeutic targets for coronary artery diseases and carotid artery disease.


Asunto(s)
Reparación del ADN , MicroARNs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Reparación del ADN/genética , MicroARNs/genética , MicroARNs/metabolismo , Anciano , Estudios Transversales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Daño del ADN/genética , Regulación de la Expresión Génica/genética , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
2.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287866

RESUMEN

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Asunto(s)
Adipogénesis , Epigénesis Genética , MicroARNs , Obesidad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Animales , Adipocitos/metabolismo , Exosomas/metabolismo , Exosomas/genética , Regulación de la Expresión Génica
3.
Autophagy ; : 1-20, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245438

RESUMEN

Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of Mir221 and Mir222. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of Mir221 and Mir222 in ADSC-Exos. Wild-type, mir221- and mir222-knockout (KO), and Mir221- and Mir222-overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) in vivo and in vitro. Treatment with ADSC-Exos or Mir221- and Mir222-mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain Mir221 and Mir222, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the Mir221 and Mir222-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.Abbreviation: ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: transformation related protein 53; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.

4.
Biosens Bioelectron ; 264: 116628, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133994

RESUMEN

Acrylamide (AA) in heat-processed foods has emerged as a global health problem, mainly carcinogenic, neurotoxic, and reproductive toxicity, and an increasing number of researchers have delved into elucidating its toxicological mechanisms. Studies have demonstrated that exposure of HepG2 by AA in a range of concentrations can induce the upregulation of miR-21 and miR-221. Monitoring the response of intracellular miRNAs can play an important role in unraveling the mechanisms of AA toxicity. Here, multicolor aggregation induced emission nano particle (AIENP) probes were constructed from three AIE dyes for simultaneous imaging of intracellular AA and AA-induced miR-21/miR-221 by combining the recognition function of AA aptamers and the signal amplification of a DNAzyme walker. The surface of these nanoparticles contains carboxyl groups, facilitating their linkage to a substrate chain modified with a fluorescent quencher group via an amide reaction. Optimization experiments were conducted to determine the optimal substrate-to-DNAzyme ratio, confirming its efficacy as a walker for signal amplification. Sensitive detection of AA, miR-21 and miR-221 was achieved in extracellular medium, with detection limits of 0.112 nM for AA, 0.007 pM and 0.003 pM for miR-21 and miR-221, respectively, demonstrating excellent selectivity. Intracellularly, ZIF-8 structure collapsed, releasing Zn2+, activating DNAzyme cleavage activity, and the fluorescence of multicolor AIENPs within HepG2 cells gradually recovered with increasing stimulation time (0-12 h) and concentrations of AA (0-500 µM). This dynamic response unveiled the relationship between AA exposure and miR-21/miR-221 expression, further validating the carcinogenicity of AA.


Asunto(s)
Acrilamida , Técnicas Biosensibles , ADN Catalítico , MicroARNs , MicroARNs/genética , Humanos , ADN Catalítico/química , Técnicas Biosensibles/métodos , Células Hep G2 , Acrilamida/química , Acrilamida/toxicidad , Nanopartículas/química , Nanopartículas/toxicidad , Colorantes Fluorescentes/química , Límite de Detección , Aptámeros de Nucleótidos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-39188553

RESUMEN

LNA-i-miR-221 is a novel microRNA(miRNA)-221 inhibitor designed for the treatment of human malignancies. It has recently undergone phase 1 clinical trial (P1CT) and early pharmacokinetics (PKs) data in cancer patients are now available. We previously used multiple allometric interspecies scaling methods to draw inferences about LNA-i-miR-221 PKs in humans and estimated the patient dose based on the safe and pharmacodynamic (PD) active dose observed in mice, therefore providing a framework for the definition of safe starting and escalation doses for the P1CT. The preliminary data collected during the P1CT showed that the LNA-i-miR-221 anticipated doses, according to our human PK estimation approach, were indeed well tolerated and effective. PD data demonstrated concentration-dependent downregulation of miR-221 and upregulation of its CDKN1B/p27 and PTEN canonical targets as well as stable disease in 8 (50.0%) patients and partial response in 1 (6.3%) colorectal cancer case. Here, we detail the experimentally evaluated PK parameters of LNA-i-miR-221 in human, using both a non-compartmental and a population PKs approach. The population approach was adequately described by a three-compartments model with first-order elimination. The recorded age, sex and body weight of patients were evaluated as potential covariates. The estimated typical population parameter values were clearance (CL = 200 mL/h/kg), central volume of distribution (V1 = 45 mL/kg), peripheral volume of distribution (V2 = 200 mL/kg, volume of the second peripheral compartment V3 = 930 mL/h/kg) and inter-compartmental clearance (Q2 = 480 mL/h/kg and Q3 = 68 mL/h/kg). Age was found to be a predictor of Q3, with a statistically significant correlation. This work aimed also at retrospectively comparing the measured plasmatic clearance values with those predicted by different allometric scaling approaches. Our comparative analysis showed that the most accurate prediction was achieved by applying the single species allometric scaling approach and that the use of more than one species in allometric scaling to predict therapeutic oligonucleotides PKs would not necessarily generate the best prediction. Finally, our predictive approach was found accurate not only in predicting the main PK parameters in human but suggesting the range of effective and safe dose to be applied in the next clinic phase 2.

6.
Int J Biol Macromol ; 279(Pt 3): 134815, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39154690

RESUMEN

Oxidative stress plays an important role in various diseases. miR-221 has been reported to regulate oxidative stress. However, the mechanism of miR-221 in regulating oxidative stress induced by sCPPS5 remains unclear. This study aimed to investigate the protective effects and mechanisms of miR-221 on oxidative stress induced by sCPPS5. The expression of SOD, CAT, MDA, LDH, MMP, caspase-3 activity and apoptosis were measured. In addition, the key signaling factors in the Keap1-Nrf2-ARE signaling pathway were determined by real-time PCR and Western blot. Mice were employed to evaluate the effects of sCPPS5 and the possible mechanism in vivo. sCPPS5 promoted the expression of SOD and CAT and activated Keap1-Nrf2-ARE signaling pathway inhibit the MDA content, MMP, caspase-3 activity, apoptosis and LDH release rate after transfection with miR-221 mimics and inhibitors. Consistently, sCPPS5 has the potential to enhance the expression of antioxidant enzymes as well as upregulate mRNA expression of crucial signal proteins in vivo. miR-221 on oxidative stress protection induced by sCPPS5 possibly through regulating the Keap1-Nrf2-ARE signaling pathway in macrophages.

7.
Anticancer Res ; 44(8): 3553-3556, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060046

RESUMEN

BACKGROUND/AIM: Caudal-type homeobox transcription factor 2 (CDX2) is a master regulator of intestinal development and maintenance of the intestinal epithelium. We previously revealed that CDX2Low colorectal cancers (CRCs) were associated with poor survival and differential response to adjuvant chemotherapy. MicroRNAs (miRNAs), a class of non-coding RNAs typically composed of fewer than 25 nucleotides, are known to regulate gene expression and signaling pathways. This study aimed to identify oncogenic miRNAs induced by CDX2 in CRC. MATERIALS AND METHODS: HCT116 cells were cultured and transfected with CDX2 siRNA. The expression levels of four oncogenic miRNAs (miR-9, miR-25, miR-106b and miR-221) were quantified by RT-qPCR. To understand whether CDX2 represented a key regulator of miR-221 expression in vivo, we analyzed the relationship between CDX2 and miR-221expression levels in the TCGA COAD database (n=454). RESULTS: The expression level of miR-221 was significantly up-regulated in CDX2 knockdown cells (n=2, p<0.05). In the TCGA database, we observed an inverse correlation between CDX2 and miR-221 expression levels, consistent with our in vitro data (r=-0.114, p=0.0149). Furthermore, the expression level of miR-221 was significantly elevated in patients with CDX2Low CRC (p<0.05). CONCLUSION: Knockdown of CDX2 induces microRNA-221 up-regulation in human CRC. Further research is warranted to elucidate the molecular mechanisms underlying miR-221 up-regulation in CDX2Low CRCs.


Asunto(s)
Factor de Transcripción CDX2 , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , MicroARNs , Regulación hacia Arriba , Humanos , MicroARNs/genética , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Células HCT116 , Técnicas de Silenciamiento del Gen
8.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000343

RESUMEN

Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-ß, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.


Asunto(s)
Células Estrelladas Hepáticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Animales , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Masculino , Tetracloruro de Carbono/efectos adversos , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/genética , Ratones Endogámicos C57BL , Movimiento Celular
9.
Diabet Med ; 41(9): e15386, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38887963

RESUMEN

AIM: Impaired wound healing in patients with diabetes can develop into nonhealing ulcerations. Because bone marrow mesenchymal stem cells (BMSCs) exosomes can promote wound healing, this study aims to investigate the mechanism of BMSCs-isolated exosomal miR-221-3p in angiogenesis and diabetic wound healing. METHODS: To mimic diabetes in vitro, human umbilical vein endothelial cells (HUVECs) were subjected to high glucose (HG). Exosomes were derived from BMSCs and identified by transmission electron microscopy (TEM), western blot analysis and dynamic light scattering (DLS). The ability to differentiate BMSCs was assessed via Oil red O staining, alkaline phosphatase (ALP) staining and alizarin red staining. The ability to internalise PKH26-labelled exosomes was assessed using confocal microscopy. Migration, cell viability and angiogenesis were tested by scratch, MTT and tube formation assays separately. The miRNA and protein levels were analysed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or western blotting. The relationship among miR-221-3p, FOXP1 and SPRY1 was determined using the dual-luciferase reporter, ChIP and RIP assays. RESULTS: Exosomal miR-221-3p was successfully isolated from BMSCs and delivered into HUVECs. HG was found to suppress the angiogenesis, cell viability and migration of HUVECs and exosomal miR-221-3p separated from BMSCs inhibited the above phenomenon. FOXP1 could transcriptionally upregulate SPRY1, and the silencing of FOXP1 reversed the HG-stimulated angiogenesis inhibition, cell viability and migration in HUVECs via the downregulation of SPRY1. Meanwhile, miR-221-3p directly targeted FOXP1 and the overexpression of FOXP1 reversed the positive effect of exosomal miR-221-3p on HUVEC angiogenesis. CONCLUSION: Exosomal miR-221-3p isolated from BMSCs promoted angiogenesis in diabetic wounds through the mediation of the FOXP1/SPRY1 axis. Furthermore, the findings of this study can provide new insights into probing strategies against diabetes.


Asunto(s)
Angiogénesis , Factores de Transcripción Forkhead , Células Madre Mesenquimatosas , MicroARNs , Neovascularización Fisiológica , Proteínas Represoras , Cicatrización de Heridas , Humanos , Movimiento Celular/genética , Regulación hacia Abajo , Exosomas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Neovascularización Fisiológica/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Cicatrización de Heridas/genética
10.
Mol Ther Nucleic Acids ; 35(2): 102221, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868363

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies and a relevant cause of cancer-related deaths worldwide. Dysregulation of microRNA (miRNA) expression has been associated with the development and progression of various cancers, including CRC. Among them, miR-221 emerged as an oncogenic driver, whose high expression is associated with poor patient prognosis. The present study was conceived to investigate the anti-CRC activity of miR-221 silencing based on early clinical data achieved from a first-in-human study by our group. Going back from bedside to bench, we demonstrated that LNA-i-miR-221 reduces cell viability, induces apoptosis in vitro, and impairs tumor growth in preclinical in vivo models of CRC. Importantly, we disclosed that miR-221 directly targets TP53BP2, which, together with TP53INP1, is known as a positive regulator of the TP53 apoptotic pathway. We found that (1) both these genes are overexpressed following miR-221 inhibition, (2) the strong anti-tumor activity of LNA-i-miR-221 was selectively observed on TP53 wild-type cells, and (3) this activity was reduced in the presence of the TP53-inhibitor Pifitrin-α. Our data pave the way to further investigations on TP53 functionality as a marker predictive of response to miR-221 silencing, which might be relevant for clinical applications.

11.
J Agric Food Chem ; 72(20): 11694-11705, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723176

RESUMEN

The most significant and sensitive antigen protein that causes diarrhea in weaned pigs is soybean 7S globulin. Therefore, identifying the primary target for minimizing intestinal damage brought on by soybean 7S globulin is crucial. MicroRNA (miRNA) is closely related to intestinal epithelium's homeostasis and integrity. However, the change of miRNAs' expression and the function of miRNAs in Soybean 7S globulin injured-IPEC-J2 cells are still unclear. In this study, the miRNAs' expression profile in soybean 7S globulin-treated IPEC-J2 cells was investigated. Fifteen miRNAs were expressed differently. The differentially expressed miRNA target genes are mainly concentrated in signal release, cell connectivity, transcriptional inhibition, and Hedgehog signaling pathway. Notably, we noticed that the most significantly decreased miRNA was ssc-miR-221-5p after soybean 7S globulin treatment. Therefore, we conducted a preliminary study on the mechanisms of ssc-miR-221-5p in soybean 7S globulin-injured IPEC-J2 cells. Our research indicated that ssc-miR-221-5p may inhibit ROS production to alleviate soybean 7S globulin-induced apoptosis and inflammation in IPEC-J2 cells, thus protecting the cellular mechanical barrier, increasing cell proliferation, and improving cell viability. This study provides a theoretical basis for the prevention and control of diarrhea of weaned piglets.


Asunto(s)
Apoptosis , Globulinas , Glycine max , Mucosa Intestinal , MicroARNs , Proteínas de Soja , Animales , MicroARNs/genética , MicroARNs/metabolismo , Porcinos , Línea Celular , Glycine max/genética , Glycine max/química , Glycine max/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Globulinas/genética , Globulinas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Células Epiteliales/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antígenos de Plantas
12.
Cancer Biother Radiopharm ; 39(6): 463-475, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38529940

RESUMEN

Background: Cancer-derived exosomes facilitate chemoresistance by transferring RNAs, yet their role in exosomal microRNA-221-3p (miR-221-3p) regulation of adriamycin resistance in breast cancer (BC) remains unclear. Methods: Adriamycin-resistant BC cells were developed from MCF-7 and MDA-MB-231 cells by incremental adriamycin exposure. The miR-221-3p levels were quantified by quantitative reverse transcription-polymerase chain reaction. Subsequently, exosomes were isolated and incubated with BC cells, and exosome-mediated adriamycin sensitivity was evaluated using Cell Counting Kit-8, colony formation, and flow cytometry assays. Sensitive cells were cocultured with miR-221-3p inhibitor-treated cells to assess adriamycin resistance. Moreover, the interaction between miR-221-3p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was validated using a dual luciferase reporter gene assay. Mimics and inhibitors were used to determine the effects of miR-221-3p on adriamycin resistance. Results: Elevated levels of miR-221-3p expression were observed in adriamycin-resistant BC cells and exosomes. Sensitive cells were cocultured with exosomes from resistant cells, resulting in increased half-maximal inhibitory concentration value and proliferation, and reduced adriamycin-induced apoptosis. However, the effects of coculturing sensitive cells with adriamycin-resistant cells were significantly weakened by miR-221-3p inhibitor transfection in adriamycin-resistant cells. PIK3R1 was found to be a target of miR-221-3p, and miR-221-3p mimics enhanced adriamycin resistance in sensitive cells. miR-221-3p inhibitors increased the expression of PIK3R1, p-AKT, c-Myc, HK2, and PKM2, decreased FOXO3 expression, and weakened the adriamycin resistance in resistant cells. Conclusions: miR-221-3p can be transferred between BC cells through exosomes. High levels of miR-221-3p were found to target PIK3R1 and promoted adriamycin resistance in BC cells. [Figure: see text].


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase Ia , Doxorrubicina , Resistencia a Antineoplásicos , Exosomas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Doxorrubicina/farmacología , Exosomas/metabolismo , Exosomas/genética , Femenino , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/genética , Antibióticos Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Células MCF-7 , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
13.
Toxicol Appl Pharmacol ; 485: 116904, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503349

RESUMEN

Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 µM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.


Asunto(s)
Apoptosis , Células Epiteliales , Pulmón , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células A549 , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Compuestos de Manganeso , Manganeso/toxicidad , Línea Celular , Cloruros/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
14.
Genes (Basel) ; 15(3)2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540448

RESUMEN

INTRODUCTION: The repertoire of microRNAs (miRNAs) in thyroid carcinomas starts to be elucidated. Among differentiated thyroid carcinomas (DTCs), papillary thyroid carcinoma (PTC) is the most frequent. The assessment of miRNAs expression may contribute to refine the pre-surgical diagnosis in order to obtain a personalized and more effective treatment for patients. AIMS: This study aims to evaluate (1) the miRNAs in a series of DTCs, and their association with the presence of selected genetic mutations in order to improve diagnosis and predict the biologic behavior of DTC/PTC. (2) The reliability of molecular tests in Ultrasound-guided Fine Needle Aspiration Cytology (US-FNAC) for a more precise preoperative diagnosis. MATERIAL AND METHODS: This series includes 176 samples (98 cytology and 78 histology samples) obtained from 106 patients submitted to surgery, including 13 benign lesions (controls) and 93 DTCs (cases). The microRNA expression was assessed for miR-146b, miR-221, miR-222, and miR-15a through quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The results were analyzed by the 2-ΔΔCT method, using miR16 as an endogenous control. Regarding PTC diagnosis, the discriminative ability of miRNAs expression was assessed by the area under the Receiver Operating Characteristic Curve (AUC). In PTCs, the association of miRNAs expression, clinicopathological features, and genetic mutations (BRAF, RAS, and TERTp) was evaluated. RESULTS/DISCUSSION: All the analyzed miRNAs presented a tendency to be overexpressed in DTCs/PTCs when compared with benign lesions, both in cytology and histology samples. In cytology, miRNAs expression levels were higher in malignant tumors than in benign tumors. In histology, the discriminative abilities regarding PTC diagnosis were as follows: miR-146b (AUC 0.94, 95% CI 0.87-1), miR-221 (AUC 0.79, 95% CI 0.68-0.9), miR-222 (AUC 0.76, 95% CI 0.63-0.89), and miR-15a (AUC 0.85, 95% CI 0.74-0.97). miR-146b showed 89% sensitivity (se) and 87% specificity (sp); miR-221 se = 68.4, sp = 90; miR-222 se = 73, sp = 70; and mi-R15a se = 72, sp = 80. MicroRNAs were associated with worst-prognosis clinicopathological characteristics in PTCs (p < 0.05), particularly for miR-222. Our data reveal a significant association between higher expression levels of miR-146b, miR-221, and miR-222 in the presence of the BRAF mutation (p < 0.001) and miR-146b (p = 0.016) and miR-221 (p = 0.010) with the RAS mutation, suggesting an interplay of these mutations with miRNAs expression. Despite this study having a relatively small sample size, overexpression of miRNAs in cytology may contribute to a more precise preoperative diagnosis. The miRNAs presented a good discriminative ability in PTC diagnosis. The association between the miRNAs expression profile and genetic alterations can be advantageous for an accurate diagnosis of DTCs/PTCs in FNAC.


Asunto(s)
Carcinoma Papilar , MicroARNs , Neoplasias de la Tiroides , Humanos , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Reproducibilidad de los Resultados , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/diagnóstico , Cáncer Papilar Tiroideo/genética , Biomarcadores
15.
Brain Inj ; 38(3): 194-201, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38297513

RESUMEN

AIM: To explore the potential role of microRNA miR-221-5p on the angiopoietin-1 (Ang-1)/Ang-2/Tie-2 signaling axis after subarachnoid hemorrhage (SAH) in a rat model. METHODS: Aspects of the rat's behavior were measured using the Kaoutzanis scoring system to test neurological responses. This included feeding behavior, body contraction, motor, and eye-opening responses. Brain sections were studied using transmission electron microscopy and Evans blue extravasation. Levels of Ang-1, Ang-2, and Tie-2 were determined by Western blot, while miR-221-5p was quantified using stem-loop real-time quantitative PCR (RT-qPCR). RESULTS: The SAH group responded worse to the neurological response test than the sham-operated group. The intercellular space was widened in the SAH group, but not in the sham-operated group. Evans blue dye leaked significantly more into brain tissue cells of the SAH group. Stem-loop qRT-PCR showed elevated miR-221-5p levels. Additionally, Ang-1 and Tie-2 were reduced but Ang-2 expression was increased after SAH. This led to a significant reduction of the Ang-1/Ang-2 ratio in the brain tissue, which was associated with the destruction of the blood-brain barrier. CONCLUSION: The data indicate that miR-221-5p might regulate blood-brain barrier dysfunction through the Ang-1/Ang-2/Tie-2 signaling axis, suggesting that it should be further investigated as a potential novel biomarker.


Asunto(s)
MicroARNs , Hemorragia Subaracnoidea , Ratas , Animales , Barrera Hematoencefálica , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Azul de Evans/metabolismo , MicroARNs/metabolismo
16.
Gene ; 909: 148316, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38401834

RESUMEN

The circular RNA/microRNA/mRNA axis is a new layer of non-coding RNA(ncRNA)-based regulatory gene expression networks upstream of numerous cell signaling pathways. Circular RNAPAN3 (circPAN3) is involved in autophagy, fibrosis and apoptosis which are responsible for the reduction incardiac functional capacityfollowingmyocardial infarction(MI). However, the molecular mechanism of circPAN3 association with apoptosis is unknown. In addition, the relationship between quercetin as a cardioprotective factor in MI and circular RNA-dependent regulatory pathways has not yet been elucidated. MI was induced in Wistar rats using the left anterior descending artery (LAD) ligation method. One day after surgery, quercetin (30 mg/kg) was injected intraperitoneal (IP) every other day for two weeks. The expression of circPAN3 was increased in the MI group (P < 0.05). The increase in circPAN3 was accompanied by a decrease in miR-221 (P < 0.0001), an increase in PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001). Quercetin effectively reduced the expression of circPAN3 (P < 0.05), PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001), and increased the expression of miR-221 (P < 0.0001) and the ratio of p-AKT to p-PI3K (P < 0.001). The circPAN3/miR-221/PTEN pathway is an ncRNA-dependent apoptotic pathway in MI cardiac tissue. Quercetin effectively modulated this pathway, resulting in a reduction of cardiac tissue death and improvement in cardiac function after MI. This suggests that the circPAN3/miR-221 axis plays a role in apoptosis in MI, and quercetin can act as a protective candidate by modulating this pathway.


Asunto(s)
MicroARNs , Infarto del Miocardio , Ratas , Animales , Caspasa 3/metabolismo , Quercetina/farmacología , ARN Circular/metabolismo , Ratas Wistar , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Apoptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
17.
Mol Biol Rep ; 51(1): 275, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310615

RESUMEN

BACKGROUND: Tumor cell spheroids are organized multicellular structures that form during the expansive growth of carcinoma cells. Spheroids formation is thought to contribute to metastasis by supporting growth and survival of mobile tumor cell populations. METHODS AND RESULTS: We investigated how spheroid architecture affects OXPHOS activity, microRNA expression, and intraperitoneal survival of an ovarian carcinoma cell line using high resolution respirometry, quantitative RT-PCR, and a rodent intraperitoneal growth model. Rates of oxidative phosphorylation/respiration per cell of cells growing as spheroids were nearly double those of a variant of the same cell type growing in suspension as loosely aggregated cells. Further, inhibition of spheroid formation by treatment with CDH2 (N-cadherin) siRNA reduced the rate of OXPHOS to that of the non-spheroid forming variant. Cells growing as spheroids showed greatly enhanced expression of miR-221/222, an oncomiR that targets multiple tumor suppressor genes and promotes invasion, and reduced expression of miR-9, which targets mitochondrial tRNA-modification enzymes and inhibits OXPHOS. Consistent with greater efficiency of ATP generation, tumor cells growing as spheroids injected into the nutrient-poor murine peritoneum survived longer than cells growing in suspension as loosely associated aggregates. CONCLUSIONS: The data indicate that growth in spheroid form enhances the OXPHOS activity of constituent tumor cells. In addition, spheroid architecture affects expression of microRNA genes involved in growth control and mitochondrial function. During the mobile phase of metastasis, when ovarian tumor cells disperse through nutrient-poor environments such as the peritoneum, enhanced OXPHOS activity afforded by spheroid architecture would enhance survival and metastatic potential.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Cadherinas/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Ováricas/patología , Fosforilación Oxidativa , Esferoides Celulares/metabolismo
18.
Aging (Albany NY) ; 16(4): 3896-3914, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38407972

RESUMEN

miR-221-3p has been reported to attenuate the osteogenic differentiation of annulus fibrosus cells (AFs), which has been implicated in intervertebral disk degeneration (IVDD) development. This study aimed to elucidate miR-221-3p's role in osteogenic differentiation and apoptosis of AFs in an IVDD model. After successfully establishing an IVDD rat model by annulus fibrosus needle puncture, AFs were isolated. Bioinformatics, dual-luciferase reporter, and AGO2-RNA immunoprecipitation (RIP) assays predicted and confirmed the potential miR-221-3p lncRNA and gene target. Functional analyses were performed after AF transfection to explore the roles of the identified lncRNA and gene. Western blotting, Alkaline phosphatase (ALP), and Alizarin red and TUNEL staining were performed to investigate AF apoptosis and osteogenic differentiation with different transfections. Compared with AFs isolated from sham rats, IVDD-isolated Afs exhibited stronger osteogenic potential and higher apoptosis rates accompanied by miR-221-3p downregulation. The growth arrest-specific transcript 5 (GAS5) was identified as miR-221-3p's target lncRNA, which was highly expressed in IVDD. GAS5 overexpression facilitated AF apoptosis and osteogenic differentiation, whereas silencing GAS5 had the opposite effect. SRY box-related11 (SOX11) was identified as a downstream miR-221-3p target gene in IVDD. GASS silencing-induced suppression of AF apoptosis and osteogenic differentiation could be reversed by SOX11 overexpression. Our findings uncovered a lncRNA GAS5/miR-221-3p/SOX11 axis in Afs under IVDD, which may help implement novel IVDD therapeutic strategies.


Asunto(s)
Degeneración del Disco Intervertebral , MicroARNs , ARN Largo no Codificante , Animales , Ratas , Apoptosis/genética , Diferenciación Celular/genética , Fibroblastos , Degeneración del Disco Intervertebral/genética , MicroARNs/genética , Osteogénesis/genética , ARN Largo no Codificante/genética
19.
Heliyon ; 10(3): e24579, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318031

RESUMEN

Aims: Heme oxygenase (HO-1) affords protection against ischaemia/reperfusion (I/R) injury; however, its effects on testicular I/R injury remain poorly explored. Herein, we aimed to examine the effects of HO-1 on testicular I/R injury and elucidate the underlying mechanism. Methods: Using the TALEN technique, we knocked out the HO-1 gene from rats. In vivo: Thirty hmox+/+ and 30 hmox-/- rats were randomly assigned to six groups: sham-operated (sham), I/R (the left testicle torsion/detorsion) 0 d,I/R 1d, I/R 3d, I/R 7d and I/R 28d. In vitro: GC-1 were suffered from: control,H/R (oxygen-deprivation/reoxygenation),H/R + HO-1 siRNA,H/R + c-Jun siRNA or H/R + HO-1 siRNA + c-jun.We performed immunofluorescence and immunohistochemistry experiments to detect HO-1 nuclear translocation. Flow cytometry was used to detect cell apoptosis and analyse the cell cycle. High-resolution miRNA, mRNA sequencing, reverse transcription-quantitative PCR, and western blotting were performed to identify testicular I/R injury-related genes strongly conserved in HO-1 knockout rats. A double luciferase reporter assay was performed to verify the relationship between C-jun and miR-221/222. Main findings: In vivo, HO-1 improved the pathological damage induced by testicular I/R. In GC-1 cells, we confirmed the nuclear translocation of HO-1 and its protective effect against hypoxia/reoxygenation (H/R) damage. Accordingly, HO-1 protein itself, rather than heme metabolites, might play a key role in testicular I/R. Gene sequencing was performed to screen for miR221/222 and its downstream gene, thymocyte selection-associated high mobility group box (TOX). HO-1 increased c-Jun phosphorylation in the H/R group, knocked down c-Jun in GC-1 cells, and decreased miR-221/222 expression. Inhibition of HO-1 expression decreased the expression of c-Jun and miR-221/222, which was rescued by adding c-Jun. Dual-luciferase reporter assay confirmed the interaction between c-Jun and miR-221/222. Conclusions: HO-1 could exert a protective effect against testicular I/R via the phosphorylated c-Jun-miR-221/222-TOX pathway.

20.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339342

RESUMEN

Alterations in microRNA (miRNA) expression have been reported in different cancers. We assessed the expression of 754 oncology-related miRNAs in esophageal adenocarcinoma (EAC) samples and evaluated their correlations with clinical parameters. We found that miR-221 and 483-3p were consistently upregulated in EAC patients vs. controls (Wilcoxon signed-rank test: miR-221 p < 0.0001; miR-483-3p p < 0.0001). Kaplan-Meier analysis showed worse cancer-related survival among all EAC patients expressing high miR-221 or miR-483-3p levels (log-rank p = 0.0025 and p = 0.0235, respectively). Higher miR-221 or miR-483-3p levels also correlated with advanced tumor stages (Mann-Whitney p = 0.0195 and p = 0.0085, respectively), and overexpression of miR-221 was associated with worse survival in low-risk EAC patients. Moreover, a significantly worse outcome was associated with the combined overexpression of miR-221 and miR-483-3p (log-rank p = 0.0410). To identify target genes affected by miRNA overexpression, we transfected the corresponding mimic RNA (miRVANA) for either miR-221 or miR-483-3p in a well-characterized esophageal adenocarcinoma cell line (OE19) and performed RNA-seq analysis. In the miRNA-overexpressing cells, we discovered a convergent dysregulation of genes linked to apoptosis, ATP synthesis, angiogenesis, and cancer progression, including a long non-coding RNA associated with oncogenesis, i.e., MALAT1. In conclusion, dysregulated miRNA expression, especially overexpression of miR-221 and 483-3p, was found in EAC samples. These alterations were connected with a lower cancer-specific patient survival, suggesting that these miRNAs could be useful for patient stratification and prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA