Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Kaohsiung J Med Sci ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287046

RESUMEN

This study explored the mechanism by which the m6A demethylase ALKBH5 mediates epithelial-mesenchymal transition (EMT) in sepsis-associated acute kidney injury (SA-AKI) and AKI-chronic kidney disease (CKD) transition. HK-2 cells were stimulated with lipopolysaccharide (LPS) to establish an in vitro model of SA-AKI. ALKBH5 expression was reduced through the transfection of si-ALKBH5. Cell viability, apoptosis, and migration were detected by CCK-8 assay, TUNEL staining, and Transwell. The levels of TNF-α, IL-1ß, and IL-6 were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction or Western blotting was performed to determine the expressions of ALKBH5, miR-205-5p, DDX5, E-cadherin, and α-SMA. The m6A level was quantitatively analyzed. The expression of pri-miR-205 bound to DGCR8 and m6A-modified pri-miR-205 after intervention with ALKBH5 expression was detected by RNA immunoprecipitation. A dual-luciferase assay confirmed the binding between miR-205-5p and DDX5. ALKBH5 was highly expressed in LPS-induced HK-2 cells. Inhibition of ALKBH5 increased cell viability, repressed apoptosis, and reduced EMT. Inhibition of ALKBH5 increased the m6A modification level, thereby promoting DGCR8 binding to pri-miR-205 to increase miR-205-5p expression and eventually targeting DDX5 expression. Low expression of miR-205-5p or overexpression of DDX5 partially abolished the inhibitory effect of ALKBH5 silencing on EMT. In conclusion, ALKBH5 represses miR-205-5p expression by removing m6A modification to upregulate DDX5 expression, thereby promoting EMT and AKI-CKD transition after SA-AKI.

2.
Mikrochim Acta ; 191(9): 545, 2024 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158763

RESUMEN

An electrochemical biosensor based on dual-amplified nucleic acid mode and biocatalytic silver deposition was constructed using catalytic hairpin assembly-hybrid chain reaction (CHA-HCR). The electrochemical detection of silver on the electrode by linear sweep voltammetry (LSV) can be utilized to quantitatively measure miR-205-5p since the amount of silver deposited on the electrode is proportional to the target nucleic acid. The current response values exhibit strong linearity with the logarithm of miR-205-5p concentrations ranging from 0.1 pM to 10 µM, and the detection limit is 28 fM. A consistent trend was found in the results of the qRT-PCR and electrochemical biosensor techniques, which were employed to determine the total RNA recovered from cells, respectively. Moreover, the constructed sensor was used to assess miR-205-5p on various cell counts, and the outcomes demonstrated the excellent analytical efficiency of the proposed strategy. The recoveries ranged from 97.85% to 115.3% with RSDs of 2.251% to 4.869% in human serum samples. Our electrochemical biosensor for miR-205-5p detection exhibits good specificity, high sensitivity, repeatability, and stability. It is a potentially useful sensing platform for tumor diagnosis and tumor type identification in clinical settings.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Plata , Técnicas Biosensibles/métodos , Humanos , MicroARNs/sangre , MicroARNs/análisis , Plata/química , Técnicas Electroquímicas/métodos , Electrodos , Técnicas de Amplificación de Ácido Nucleico/métodos
3.
Clin Transl Oncol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133387

RESUMEN

BACKGROUND: Tumor-derived exosomal miRNAs play crucial roles in cancer diagnosis. Current studies aim to identify exosomal miRNAs associated with colorectal cancer (CRC) that are noninvasive, sensitive, and specific. PATIENTS AND METHODS: Exosomes were extracted from CRC patients and healthy donors via ultracentrifugation, followed by verification via transmission electron microscopy (TEM), qNano, and Western blot analysis. The differential expression levels and clinical characteristics of miR-205-5p were analyzed in CRC via data from The Cancer Genome Atlas (TCGA). Real-time quantitative PCR was used to assess the expression levels of exosomal miRNAs in 157 primary CRC patients, 20 patients with benign diseases, and 135 healthy donors. Predictions regarding target genes were made to guide further exploration of the disease's etiopathogenesis through bioinformatics. RESULTS: Compared with that in healthy donors, the expression of miR-205-5p in colorectal cancer (CRC) patients was significantly lower, as determined through analysis of the TCGA database. We conducted a prediction and analysis of the functional enrichment of downstream target genes regulated by miR-205-5p. A lower level of exosomal miR-205-5p in the serum of CRC patients than in that of healthy controls (p < 0.0001) and patients with benign disease (p < 0.0001) was observed. Furthermore, the expression levels of exosomal miR-205-5p were significantly lower in early-stage CRC patients than in the comparison groups (p<0.001 and p < 0.0001). Notably, the expression levels of exosomal miR-205-5p significantly increased postoperatively (p = 0.0053). CONCLUSIONS: The present study demonstrated that serum exosomal miR-205-5p may be a diagnostic biomarker for CRC.

4.
Biol Reprod ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101465

RESUMEN

Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signalling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.

6.
J Med Life ; 17(3): 353-359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39044928

RESUMEN

Psoriasis is a chronic skin disease that affects a significant number of patients and can severely impair quality of life. Although the diagnosis is normally clinical, paraclinical determination can occasionally be useful either in differential diagnosis or in evaluating the inflammatory response to treatment. MicroRNAs (miRNAs) are small non-coding parts of the RNA family that regulate gene expression and may have an important role as biomarkers in evaluating treatment response. The dysregulation of miRNAs has been well studied in other diseases, especially in oncology, but their role in chronic skin conditions such as psoriasis is still not fully understood. This study aims to evaluate the levels of three miRNAs (miR-155, miR-210, and miR-205) in patients with psoriasis, treated either systemically or topically, compared to a control group, and to assess the possible relationship between miRNA levels and systemic therapy. Our findings show a constant dysregulation of miR-205 in patients with psoriasis, with significantly higher levels compared to the control group, which can be explained as conferring a protective effect to treated patients. Further studies are needed in order to fully understand the role of miRNAs in the physiopathology of psoriasis and even, potentially, to provide more targeted genetic therapies in the future.


Asunto(s)
Biomarcadores , MicroARNs , Psoriasis , Humanos , Psoriasis/genética , Psoriasis/tratamiento farmacológico , MicroARNs/genética , Biomarcadores/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles
7.
Ann Clin Lab Sci ; 54(3): 354-362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39048172

RESUMEN

OBJECTIVE: Bladder cancer (BC) is primarily treated with cisplatin-based chemotherapy, but the development of cisplatin resistance often leads to BC recurrence. This study is focused on assessing the potential of gambogic acid (GA) in mitigating BC cells' cisplatin resistance, along with an analysis of the underlying mechanism involved. METHODS: Cisplatin was administered to human bladder transitional cell carcinoma cells (T24) at various concentration gradients to induce cisplatin-resistant (T24-DDP) cells. Several experimental groups were set: T24 group, T24-DDP group, T24-DDP+DDP group, T24-DDP+GA group, T24-DDP+DDP+GA group, T24-DDP+DDP+GA+miR-NC group, and T24-DDP+DDP+GA+miR-205-5p inhibitor group. The cell counting kit-8 (CCK-8) assay, Transwell migration assay, and scratch assay were respectively carried out for assessment of cell proliferation, invasion, and migration. Western blot analysis was conducted for detection of the protein expression of E-cadherin, ZEB1, Vimentin, N-cadherin, LRP, MRP, and P-gp in the cells, while the relative expression level of miR-205-5p was determined by qRT-PCR. RESULTS: In comparison with the T24-DDP group, cells in the T24-DDP+GA group showed enhanced sensitivity to cisplatin. Furthermore, as indicated by CCK-8 assay, GA improved T24-DDP cells' sensitivity to cisplatin, potentiated the effects of cisplatin, and exerted an inhibitory effect on the invasion, proliferation, as well as migration of T24-DDP cells. Through Western blot analysis, GA was revealed to significantly inhibit the expression of N-cadherin, E-cadherin, and Vimentin, as well as that of cisplatin-resistant proteins MRP, P-gp, and LRP in BC cells. In addition, shown by further experiments, GA promoted miR-205-5p expression and simultaneously inhibited ZEB1 expression within the cells. CONCLUSION: GA alleviates BC cells' cisplatin resistance through the epithelial-mesenchymal transition pathway mediated by the miR-205-5p/ZEB1 axis.


Asunto(s)
Proliferación Celular , Cisplatino , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , MicroARNs , Neoplasias de la Vejiga Urinaria , Xantonas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Humanos , Cisplatino/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Xantonas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología
8.
Hum Cell ; 37(5): 1434-1445, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38902566

RESUMEN

Human papillomavirus (HPV) infection is a major contributor to cervical cancer. Persistent HPV infection can trigger the expression of IL-32, yet the precise role of IL-32 in the occurrence and development of cervical cancer remains elusive. To investigate this, qRT‒PCR and western blotting were utilized to measure the mRNA and protein expression levels; bioinformatics analysis was used to screen differentially expressed miRNAs; wound healing and transwell assays were conducted to evaluate cell migration and invasion capabilities. Comparative analysis revealed significantly elevated IL-32 expression in cervical cancer tissues and cell lines compared to control groups. In SiHa and/or HeLa, overexpression of IL-32 and IL-32 exposure markedly upregulated miR-205, whereas its knockdown resulted in a substantial downregulation of miR-205. Furthermore, miR-205 also could significantly regulate the expression of IL-32 in HeLa and SiHa cells. Upregulation and downregulation of IL-32 led to a significant increase or decrease in NFκB expression, respectively. Treatment with BAY11-7082 (an NFκB inhibitor) notably decreased miR-205 expression but had no effect on IL-32 levels. qRT‒PCR and western blotting analyses demonstrated that both overexpression and underexpression of IL-32 and miR-205 significantly enhanced or reduced MMP2 and MMP9 expression in cervical cancer cells, respectively. Knockdown of IL-32 significantly inhibited the migration and invasion of HeLa and SiHa; conversely, treatment with rIL-32α and rIL-32γ notably promoted their migration and invasion. In brief, IL-32 is highly expressed via the formation of a positive regulatory loop with NFκB/miR-205, contributing to the persistence of inflammation and promoting the progression of cervical cancer.


Asunto(s)
Movimiento Celular , Interleucinas , MicroARNs , FN-kappa B , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/fisiología , Femenino , Movimiento Celular/genética , FN-kappa B/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral , Células HeLa , Regulación hacia Arriba/genética , Invasividad Neoplásica/genética
9.
Antioxidants (Basel) ; 13(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38671899

RESUMEN

After delivery, the death of trophoblast cells can promote the expulsion of the placenta. Ferroptosis, an iron-dependent programmed cell death, is involved in mammalian development. Circular RNAs are associated with placental development; however, it is unclear whether circular RNAs regulate the expulsion of fetal membranes through ferroptosis. The gene expression profiles in the tail vein blood of Holstein cows with normal and retained placentas were investigated using RNA sequencing and a GSE214588 dataset. circAMN1 and SLC39A8 expression was significantly downregulated in the blood of cows with a retained placenta, whereas miR-205_R-1 expression was significantly upregulated. We validated erastin-induced ferroptosis in trophoblast cells. Transfection with si-circAMN1 and miR-205_R-1 mimic reduced intracellular total iron, Fe2+, and glutathione disulfide levels; increased intracellular glutathione levels and glutathione/glutathione disulfide; and enhanced cell viability in these cells. In contrast, transfection with pcDNA3.1 circAMN1 and an miR-205_R-1 inhibitor promoted ferroptosis. As an miR-205_R-1 sponge, circAMN1 regulated the expression of SLC39A8 to control erastin-induced ferroptosis and regulated the proliferation, invasion, and migration of trophoblast cells. Our findings provide a theoretical basis for studying the mechanism by which programmed cell death regulates fetal membrane expulsion and indicate its potential as a therapeutic target for placenta retention.

10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542261

RESUMEN

MicroRNAs (miRNA) are involved in the process of carcinogenesis, including the development of endometrial cancer (EC). This study aimed to investigate the association between the expression of three miRNAs (miR-21-5p, miR-205-5p, and miR-222-3p) in endometrial cancer tissues. In addition, the stability of expression of SNORD48 and U6, which were initially planned to be used as reference miRNAs for normalization, was investigated. Endometrial tissue was obtained from 111 patients with EC during hysterectomy and from 19 patients undergoing surgery for uterine fibroids or pelvic organ prolapse as a control group without neoplastic changes. Our study was based on calculations made with a digital PCR method (Qiagen, Hilden, Germany) to measure the absolute expression. In the endometrial cancer tissue, miR-205-5p was upregulated, while miR-222-3p and SNORD48 were downregulated compared to the control group. We detected statistically significant correlation of miR-205-5p, U6, and SNORD48 expression with different histological grades; the expression of miR-205-5p increases with the histopathological grade advancement (intraepithelial neoplasia- EIN = 1590, G1 = 3367.2, G2 = 8067 and G3 = 20,360), while U6 and SNORD expression decreases from EIN to G2 and increases again in the G3 grade (U6: EIN = 19,032, G1 = 16,482.4, G2 = 13,642.4, G3 = 133,008; SNORD48: EIN = 97,088, G1 = 59,520, G2 = 43,544, G3 = 227,200). Our study suggests that upregulation of miR-205-5p and downregulation of miR-222-3p and SNORD48 may influence development of endometrial cancer. Moreover, miR-205-5p, U6, and SNORD48 expression changes may be associated with progression of endometrial cancer. The results also indicate that SNORD48 and U6, commonly used as internal references, may influence endometrial cancer development and progression; therefore, they should not be used as references. However, it is important to note that further research is required to understand their role in endometrial cancer.


Asunto(s)
Neoplasias Endometriales , MicroARNs , Femenino , Humanos , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Endometriales/genética , Regulación hacia Abajo/genética , Reacción en Cadena de la Polimerasa
11.
Oncol Rep ; 51(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426536

RESUMEN

The aim of the present study was to explore the association between N6­methyladenosine (m6A) modification regulatory gene­related long noncoding (lnc)RNA RP1­228H13.5 and cancer prognosis through bioinformatics analysis, as well as the impact of RP1­228H13.5 on cell biology­related behaviors and specific molecular mechanisms. Bioinformatics analysis was used to construct a risk model consisting of nine genes. This model can reflect the survival time and differentiation degree of cancer. Subsequently, a competing endogenous RNA network consisting of 3 m6A­related lncRNAs, six microRNAs (miRs) and 201 mRNAs was constructed. A cell assay confirmed that RP1­228H13.5 is significantly upregulated in liver cancer cells, which can promote liver cancer cell proliferation, migration and invasion, and inhibit liver cancer cell apoptosis. The specific molecular mechanism may be the regulation of the expression of zinc finger protein interacting with K protein 1 (ZIK1) by targeting the downstream hsa­miR­205. Further experiments found that the m6A methyltransferase 14, N6­adenosine­methyltransferase subunit mediates the regulation of miR­205­5p expression by RP1­228H13.5. m6A methylation regulatory factor­related lncRNA has an important role in cancer. The targeting of hsa­miR­205 by RP1­228H13.5 to regulate ZIK1 may serve as a potential mechanism in the occurrence and development of liver cancer.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , Neoplasias Hepáticas/genética , Metiltransferasas/genética , ARN Largo no Codificante/genética , Proteínas Asociadas a Microtúbulos
12.
Phytomedicine ; 128: 155261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493716

RESUMEN

BACKGROUND: Recurrence and metastasis are the main causes of disease deterioration in colorectal cancer (CRC) patients, yet efficient therapeutic strategies are lacking. Natural compounds for efficient antitumour therapeutics are becoming increasingly prominent. Kaempferol, one of the main components of flavonoids in plants, displays a variety of pharmacological activities. Our preliminary experiments suggested that kaempferol could inhibit CRC metastasis and is significantly associated with the ß-catenin signalling pathway. Moreover, we also defined the regulatory roles of JMJD2C in ß-catenin signalling in our previous work. PURPOSE: This study aims to reveal the mechanism by which kaempferol inhibits CRC progression and regulates the JMJD2C/ß-catenin signalling pathway. METHODS: The migratory capabilities of CRC cells after kaempferol intervention were measured by scratch wound healing and transwell assays. Circ_0000345 knockdown CRC stable cell lines were generated by lentivirus infection. The possible mechanism of kaempferol on circ_0000345 was verified by molecular-protein docking and verification program cellular thermal shift assay (CETSA). A dual luciferase reporter gene assay was carried out for the targeting relationship among circ_0000345, miR-205-5p and JMJD2C. Fluorescence in situ hybridization (FISH) was performed to determine the expression of circ_0000345 in tumour tissues. A pulmonary metastatic model of CRC in vitro was built to assess the antimetastatic effect and mechanism of kaempferol in vivo. RESULTS: In vitro, kaempferol inhibits the ability to migrate of CRC cells by reducing the activation of the JMJD2C/ß-catenin signalling pathway. MiR-205-5p is a key bridge for kaempferol to inhibit the expression of JMJD2C. The function of miR-205-5p is impeded by circ_0000345, which shows higher expression levels in human metastatic CRC tissues than nonmetastatic CRC tissues, and its formation is regulated by the RNA-binding proteins HNRNPK and HNRNPL. Mechanistically, kaempferol physically interacts with HNRNPK and HNRNPL to suppress JMJD2C by downregulating the expression of circ_0000345. In vivo, kaempferol suppresses CRC lung metastasis. Kaempferol inhibits the activation of JMJD2C/ß-catenin signalling through reducing the expression of circ_0000345 in the CRC lung metastasis model. CONCLUSION: Circ_0000345 enhances activation of the JMJD2C/ß-catenin signalling pathway through miR-205-5p to promote CRC metastasis. Kaempferol inhibits CRC metastasis through the circ_0000345-mediated JMJD2C/ß-catenin signalling pathway, and this effect is influenced as a direct consequence of the binding of kaempferol with HNRNPK and HNRNPL. This provides promising therapeutic and/or adjuvant agents for advanced CRC and sheds light on the multifaceted role of phytomedicine in cancer.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas con Dominio de Jumonji , Quempferoles , beta Catenina , Quempferoles/farmacología , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , beta Catenina/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , ARN Circular/metabolismo , ARN Circular/genética , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino , MicroARNs/metabolismo , MicroARNs/genética , Ratones , Simulación del Acoplamiento Molecular
13.
Pharmacology ; 109(2): 98-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325349

RESUMEN

INTRODUCTION: Membrane-associated guanylate kinase with an inverted domain structure-1 (MAGI1) is dysregulated in diabetes; however, its role in diabetic nephropathy (DN) remains unclear. In this study, we determined the function and associated mechanisms of MAGI1 in DN. METHODS: Serum samples from 28 patients with DN and 28 normal volunteers were collected. High-glucose (HG)-treated human renal mesangial cells (HRMCs) and streptozotocin-treated rats were used as cell and animal models of DN, respectively. MAGI1 mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. An 5-Ethynyl-2'-deoxyuridine assay was used to assess cell proliferation, whereas Western blot analysis was performed to quantitate the levels of markers associated with proliferation, the extracellular matrix (ECM), and inflammation. These included collagens I, collagen IV, cyclin D1, AKT, phosphorylated-AKT (p-AKT), PI3K, and phosphorylated-PI3K (p-PI3K). The predicted binding of miR-205-5p with the MAGI1 3'UTR was verified using a luciferase assay. RESULTS: MAGI1 expression was increased in serum samples from DN patients and in HRMCs treated with HG. MAGI1 knockdown attenuated excessive proliferation, ECM accumulation, and inflammation in HG-induced HRMCs as well as injury to DN rats. MiR-205-5p potentially interacted with the 3'UTR of MAGI1 and binding was verified using a dual-luciferase reporter assay. Moreover, miR-205-5p repression offset the inhibitory influence of MAGI1 knockdown on proliferation, collagen deposition, and inflammation in HG-treated HRMCs. CONCLUSION: MAGI1 contributes to injury caused by DN. Furthermore, miR-205-5p binds to MAGI1 and suppresses MAGI1 function. These findings suggest that miR-205-5p-mediates MAGI1 inhibition, which represents a potential treatment for DN.


Asunto(s)
Nefropatías Diabéticas , MicroARNs , Animales , Humanos , Ratas , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colágeno/metabolismo , Diabetes Mellitus , Nefropatías Diabéticas/genética , Glucosa/metabolismo , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Inflamación/genética , Luciferasas/genética , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Biochem Genet ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376578

RESUMEN

Diabetic nephropathy (DN) threatens the survival quality of patients, with complex pathogenesis. Circular RNA (circRNA) dysregulation occurs in DN development. This work aimed to investigate the role of circ-Luc7l in DN cell models and related molecular mechanisms. The expression of circ-Luc7l, microRNA (miR)-205-5p, and transforming growth factor-beta receptor 1 (Tgfbr1) was examined by real-time quantitative PCR (RT-qPCR). Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) assay and EdU assay. The expression of extracellular matrix (ECM)-related markers and Tgrbr1 protein was measured by Western blot. The binding between miR-205-5p and circ-Luc7l or Tgfbr1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Experimental animal models were established to elucidate the function of circ-Luc7l in vivo. Circ-Luc7l expression was notably enhanced in high glucose (HG)-treated mesangial cells. Knockdown of circ-Luc7l attenuated HG-induced cell proliferation, inflammation, and ECM accumulation in vitro and relieved inflammation and ECM accumulation of kidneys of diabetic mice in vivo. Circ-Luc7l targeted miR-205-5p, and miR-205-5p inhibition rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. MiR-205-5p bound to Tgfbr1 whose expression was negatively regulated by circ-Luc7l. Tgfbr1 overexpression also rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. In HG conditions, increased circ-Luc7l upregulated Tgfbr1 expression via targeting miR-205-5p to induce DN progression.

15.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256008

RESUMEN

Exosomes or small extracellular vesicles (sEVs) represent a pivotal component in intercellular communication, carrying a diverse array of biomolecules. Several factors can affect sEVs release dynamics, as occurs in hyperglycemia or inflammation. In fact, sEVs release has been associated with the promotion of physio-pathological processes. Among the sEVs cargo, microRNAs play an essential role in cell-to-cell regulation. More concretely, miR-205-5p is related to angiogenesis and cell proliferation. The aim of this study is to understand the specific role of sEVs containing miR-205-5p under high glucose conditions. ARPE-19 cells were cultured with high glucose (HG) for 5 days. sEVs were isolated and characterized. sEVs from ARPE-19 were used for angiogenesis and cell proliferation. HG increased sEVs release but downregulated miR-205-5p cargo expression compared to the control. sEVs from HG-treated ARPE-19 cells promoted tube formation and migration processes. In contrast, miR-205-5p overexpression (by mimic transfection) decreased angiogenesis and cell migration. Our results demonstrate how ARPE-19 cells respond to HG challenge by increasing sEVs with weak miR-205-5p cargo. The absence of this miRNA in sEVs is enough to promote angiogenesis. In contrast, restoring sEVs-miR-205-5p levels decreased it. These findings open new possibilities in sEVs-based therapies containing miR-205-5p against angiogenesis.


Asunto(s)
Angiogénesis , MicroARNs , Comunicación Celular , Movimiento Celular/genética , MicroARNs/genética , Glucosa
16.
J Biochem Mol Toxicol ; 38(1): e23617, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38079211

RESUMEN

Renal interstitial fibrosis (RIF) represents an irreversible and progressive pathological manifestation of chronic renal disease, which ultimately leads to end-stage renal disease. Long noncoding RNAs (lncRNAs) have been suggested to be involved in the progression of RIF. Small nucleolar RNA host gene 16 (SNHG16), a member of lncRNAs, has been found to be involved in the progression of pulmonary fibrosis. This paper first researched the effect of SNHG16 on renal fibrosis. We established a unilateral ureteral obstruction (UUO)-induced mouse RIF model by ligation of the left ureter to evaluate the biological function of SNHG16 in RIF. As a result, SNHG16 was upregulated in UUO-induced renal fibrotic tissues. Knockdown of SNHG16 inhibited RIF and reduced alpha-smooth muscle actin (α-SMA), fibronectin, and college IV expression. miR-205 was a target of SNHG16, and downregulated in UUO-induced renal fibrotic tissues. Inhibition of miR-205 promoted RIF and increased the expression of α-SMA, college IV, and fibronectin. Overexpression of SNHG16 promoted the UUO-induced RIF, but miR-205 abrogated this effect of SNHG16. Histone deacetylase 5 (HDAC5) showed high expression in UUO-induced renal fibrotic tissues. Knockdown of HDAC5 significantly reduced α-SMA, fibronectin, and college IV expression in renal tissues of UUO-induced mice. Inhibition of miR-205 promoted HDAC5 expression, but knockdown of SNHG16 inhibited HDAC5 expression in renal tissues of UUO-induced mice. In conclusion, SHNG16 is highly expressed in renal fibrotic tissues of UUO-induced mice. Knockdown of SHNG16 may prevent UUO-induced RIF by indirectly upregulating HDAC5 via targeting miR-205. SHNG16 may be novel target for treating renal fibrosis.


Asunto(s)
Enfermedades Renales , MicroARNs , ARN Largo no Codificante , Obstrucción Ureteral , Animales , Humanos , Ratones , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Histona Desacetilasas/genética , Enfermedades Renales/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
17.
Thorac Cancer ; 15(3): 227-238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38087801

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been shown to mediate tumor-associated macrophages (TAMs) to regulate the development of many cancers, including lung adenocarcinoma (LUAD). However, whether circ_0001715 regulates LUAD progression by mediating TAMs polarization remains uncertain. METHODS: Monocytes (THP-1) were treated with PMA to induce M0 macrophages. M0 macrophages were incubated with LUAD cells-derived exosomes and then cocultured with LUAD cells. The levels of circ_0001715, M2 macrophage markers, microRNA (miR)-205-5p, and triggering receptor expressed on myeloid cells-2 (TREM2) were examined using quantitative real-time PCR. Flow cytometry was performed to assess M2 macrophage surface marker CD206. Cell proliferation, migration and invasion were determined using cell counting kit 8, EdU, colony formation and transwell assays. Dual-luciferase reporter assay was used to investigate the interactions between miR-205-5p and circ_0001715 or TREM2. RESULTS: Circ_0001715 knockdown inhibited M2 macrophage polarization and its overexpression had an opposite effect. After M0 macrophages transfected with si-circ_0001715 were cocultured with LUAD cells, the proliferation and metastasis of LUAD cells were markedly reduced. Exosomes transferred circ_0001715 between M0 macrophages and LUAD cells. Exosomal circ_0001715 promoted M2 macrophage polarization to increase LUAD cell proliferation and metastasis. In terms of mechanism, circ_0001715 sponged miR-205-5p to positively regulate TREM2. TREM2 upregulation also could promote LUAD cell proliferation and metastasis via increasing M2 macrophage polarization. In addition, TREM2 knockdown reversed the effect of exosomal circ_0001715 on M2 macrophage polarization and LUAD cell progression. CONCLUSION: Exosomal circ_0001715 led to LUAD cell proliferation and metastasis by promoting M2 macrophage polarization via the miR-205-5p/TREM2 axis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Adenocarcinoma del Pulmón/genética , Macrófagos , Células Mieloides , MicroARNs/genética , Proliferación Celular , Neoplasias Pulmonares/genética , Línea Celular Tumoral
18.
J Biochem Mol Toxicol ; 38(1): e23594, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38050438

RESUMEN

The role of LINC01703 in cancers, especially in colorectal cancer (CRC), is still largely unclear. Bioinformatics prediction, real-time quantitative polymerase chain reaction (RT-qPCR), 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, colony formation assay, Transwell assays, in vivo animal experiments, IF, luciferase reporter assay, and Western blot were carried out for the exploration of the potential involvement and underlying molecular mechanisms of LINC01703 in CRC cells. The results showed that LINC01703 appeared upregulated in CRC and was linked to poor prognosis. LINC01703 acted as an oncogene in both in vitro and in vivo CRC cell environments. LINC01703 activated the PI3K/AKT signaling pathway by mediating the miR-205-5p/E2F1 axis in CRC. In summary, LINC01703 possesses an oncogenic function and can be a possible biomarker or target to treat CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Invasividad Neoplásica , MicroARNs/genética , MicroARNs/metabolismo , Movimiento Celular/genética
19.
Apoptosis ; 29(1-2): 191-209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945815

RESUMEN

During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin ß1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin ß1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin ß1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Animales , Embrión de Pollo , Femenino , Humanos , Ratones , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Integrina beta1/genética , Integrina beta1/metabolismo , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017242

RESUMEN

Objective To investigate the effects of long non-coding RNA 00894(LINC00894)gene on prolifera-tion and metastasis of human gastric cancer cells,and to verify the regulatory relationship of LINC00894,miR-205-5p and ZEB1 in gastric cancer.Methods The expression level of LINC00894 in gastric cancer cell lines,normal gastric lines,clinical gastric cancer and normal gastric tissue samples were determined by RT-qPCR.Through fol-low-up,the relationship between the expression level of LINC00894 and the prognosis of gastric cancer patients was explored.LINC00894 knockdown cell lines and overexpression cell lines were constructed,and the knockdown and overexpression efficiency was detected by RT-qPCR.Cell proliferation and metastatic capacity were determined by CCK 8,clone formation and Transwell assays.Dual-luciferase reporter assays,RT-qPCR assays and Western blot assays were used to examine the targeted regulatory relationships of LINC00894,miR-205-5p and ZEB1.Results The expression of LINC00894 gene in gastric cancer tissues or cells was significantly higher than that in normal gas-tric tissues or cells,moreover,gastric cancer patients with high LINC00894 gene expression had a worse prognosis.The knockdown of LINC00894 inhibited the viability,clonogenesis,migration and invasion ability of gastric cancer cells,and conversely,the overexpression of LINC00894 obtained the opposite results.LINC00894 promoted ZEB1 expression by targeted downregulation of miR-205-5p expression.LINC00894 promoted the expression of ZEB1 by targeting miR-205-5p and down-regulating its expression.Conclusion LINC00894 serves as an oncogene in gastric cancer and may promote proliferation and metastasis of gastric cancer cells via regulating miR-205-5p/ZEB1 axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA