Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Neurooncol Adv ; 6(1): vdae106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114182

RESUMEN

Background: Molecular glioblastoma (molGB) does not exhibit the histologic hallmarks of a grade 4 glioma but is nevertheless diagnosed as glioblastoma when harboring specific molecular markers. MolGB can easily be mistaken for similar-appearing lower-grade astrocytomas. Here, we investigated how advanced imaging could reflect the underlying tumor biology. Methods: Clinical and imaging data were collected for 7 molGB grade 4, 9 astrocytomas grade 2, and 12 astrocytomas grade 3. Four neuroradiologists performed VASARI-scoring of conventional imaging, and their inter-reader agreement was assessed using Fleiss κ coefficient. To evaluate the potential of advanced imaging, 2-sample t test, 1-way ANOVA, Mann-Whitney U, and Kruskal-Wallis test were performed to test for significant differences between apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) that were extracted fully automatically from the whole tumor volume. Results: While conventional VASARI imaging features did not allow for reliable differentiation between glioma entities, rCBV was significantly higher in molGB compared to astrocytomas for the 5th and 95th percentile, mean, and median values (P < .05). ADC values were significantly lower in molGB than in astrocytomas for mean, median, and the 95th percentile (P < .05). Although no molGB showed contrast enhancement initially, we observed enhancement in the short-term follow-up of 1 patient. Discussion: Quantitative analysis of diffusion and perfusion parameters shows potential in reflecting the malignant tumor biology of molGB. It may increase awareness of molGB in a nonenhancing, "benign" appearing tumor. Our results support the emerging hypothesis that molGB might present glioblastoma captured at an early stage of gliomagenesis.

2.
Discov Med ; 36(186): 1363-1369, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054707

RESUMEN

BACKGROUND: Ulcerative colitis is a well-known inflammatory bowel disease. Patients have an increased risk of developing colitis associated carcinoma (CAC). It is important for patient management to be able to distinguish between ulcerative colitis associated carcinoma and sporadic carcinoma (sCRC). However, this distinction is frequently very challenging. It is not readily possible to differentiate this histologically. However, the diagnosis is crucial for the patient's further treatment and follow-up. An attempt was therefore made to develop a diagnostic regime that would enable a reliable distinction between sCRC and CAC. METHODS: We screened 96 patients analyzing more than 850,000 methylation hotspots, to detect distinct epigenetic patterns between both types of carcinomas. Patients with sporadic carcinoma and colitis-associated carcinoma as well as patients with normal colon and patients with confirmed ulcerative colitis without neoplasia were used for the analysis. By extensively filtering the results, methylation sites relevant to distinguish between CAC and sCRC were identified. RESULTS: After the results were filtered, three methylation sites relevant to distinguish between CAC and sCRC were identified. For this purpose, methylation limit values were defined, which favor the samples as CAC or sCRC up to a certain methylation value of the methylation sites. The combination of three methylation sites allows a correct assignment to CAC or sCRC in 94.5% of the cases. CONCLUSION: The results show that these three methylation sites are promising markers in the diagnosis of CAC vs sCRC. Nevertheless, the diagnosis should always be made in conjunction with histomorphological analyses.


Asunto(s)
Colitis Ulcerosa , Neoplasias Asociadas a Colitis , Neoplasias Colorrectales , Metilación de ADN , Humanos , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/genética , Colitis Ulcerosa/complicaciones , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/diagnóstico , Masculino , Femenino , Epigénesis Genética
3.
Carbohydr Polym ; 342: 122302, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048211

RESUMEN

Methylation followed by depolymerization and gas chromatography (GC) is an effective methodology for the linkage analysis of polysaccharides, including fucoidan, a sulphated algal polysaccharide. However, this sample material demands attention to experimental details to prevent aberrations in the analytical result. The use of deficient bases for methylation, the presence of water, analyte degradation during hydrolysis, and coelution of the target analytes during gas chromatography create doubts about published results. We therefore investigated critical parameters of the method and carefully optimized the steps of the protocol to ensure the integrity of the results for the fucose monomers. Fucoidan from Cladosiphon okamuranus was used as reference sample to determine the glycosidic bonds, and sulphate positions in the monomer. Fucoidan in protonated form was methylated in a strictly water-free environment using lithium dimsyl as base and methyl iodide for methylation. The methylated polymer was isolated by solid phase extraction, which was crucial to recover also the highly sulfated fraction. Hydrolysis was conducted with trifluoroacetic acid. To separate all target analytes in GC-FID/MS, a stationary phase with high cyanopropyl content (HP-88) was required, as the commonly employed phenyl siloxane phases result in co-elution, which distorts the result severely.


Asunto(s)
Fucosa , Phaeophyceae , Polisacáridos , Polisacáridos/química , Fucosa/química , Metilación , Phaeophyceae/química , Hidrólisis , Cromatografía de Gases y Espectrometría de Masas , Extracción en Fase Sólida/métodos , Sulfatos/química , Sulfatos/análisis , Hidrocarburos Yodados
4.
Transl Cancer Res ; 13(6): 3075-3089, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988931

RESUMEN

Background: While the widespread use of endoscopic submucosal dissection (ESD) has significantly reduced the incidence of early esophageal cancer (ESCA), the limited ability of ESD to strip deep infiltrating esophageal lesions results in a considerable risk of intraoperative perforation. Circulating-free DNA (cfDNA) is widely used in modern tumor screening due to its non-invasive detection capabilities. A methylation analysis offers vital insights into the condition and advancement of malignancies due to its unique positioning, such as a marker of cancer. This study investigated the potential of combining a non-invasive liquid biopsy technique, along with a methylation analysis, to assess the surgical perforation risk of ESCA patients. Methods: In this study, we conducted an analysis of gene expression differences between stage I esophageal squamous carcinoma samples and healthy tissue samples using data from The Cancer Genome Atlas (TCGA) database. We also identified the genes associated with progression-free survival (PFS) in esophageal squamous carcinoma. Integrating the framework of the methylation analysis, we explored the methylated sites of these distinct genes. To refine this process, we used the Shiny Methylation Analysis Resource Tool (SMART) to conduct a comprehensive analysis of these sites. We then confirmed the stability of the methylation sites in different lesion conditions using methylation-specific quantitative polymerase chain reaction (MS-qPCR) with paraffin tissue samples collected after ESD. Results: We analyzed RNA-sequencing data from 42 early stage ESCA patients and 17 controls, identifying 1,263 up-regulated and 460 down-regulated genes. Functional analyses revealed involvement in key pathways such as cell cycle regulation and immune responses. Furthermore, we identified 38 differentially expressed genes associated with PFS. Using SMART analysis, we found 217 hyper-methylated regions in 38 genes, suggesting potential early markers for ESCA. Validation experiments confirmed the reliability of 29 hyper-methylated regions in FFPE tissue samples and 6 regions in cfDNA. A LunaCAM model showed high accuracy [area under the curve (AUC) =0.89] in discriminating early ESCA. Integrated assessment of six highly methylated regions significantly improved predictive performance, with 90.56% sensitivity, highlighting the importance of combinatorial biomarker evaluation for early cancer detection. Conclusions: This study established a novel approach that integrates non-invasive testing with a methylation analysis to assess the surgical risk of early ESCA patients. The significance of changes in methylation sites in relation to lesion status should not be underestimated, as they have the potential to offer vital insights for proactive risk assessments before surgery.

5.
J Med Virol ; 96(6): e29769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932482

RESUMEN

Integration of the human papillomavirus (HPV) genome into the cellular genome is a key event that leads to constitutive expression of viral oncoprotein E6/E7 and drives the progression of cervical cancer. However, HPV integration patterns differ on a case-by-case basis among related malignancies. Next-generation sequencing technologies still face challenges for interrogating HPV integration sites. In this study, utilizing Nanopore long-read sequencing, we identified 452 and 108 potential integration sites from the cervical cancer cell lines (CaSki and HeLa) and five tissue samples, respectively. Based on long Nanopore chimeric reads, we were able to analyze the methylation status of the HPV long control region (LCR), which controls oncogene E6/E7 expression, and to identify transcriptionally-active integrants among the numerous integrants. As a proof of concept, we identified an active HPV integrant in between RUNX2 and CLIC5 on chromosome 6 in the CaSki cell line, which was supported by ATAC-seq, H3K27Ac ChIP-seq, and RNA-seq analysis. Knockout of the active HPV integrant, by the CRISPR/Cas9 system, dramatically crippled cell proliferation and induced cell senescence. In conclusion, identifying transcriptionally-active HPV integrants with Nanopore sequencing can provide viable targets for gene therapy against HPV-associated cancers.


Asunto(s)
Terapia Genética , Secuenciación de Nanoporos , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Integración Viral , Humanos , Neoplasias del Cuello Uterino/virología , Femenino , Secuenciación de Nanoporos/métodos , Integración Viral/genética , Terapia Genética/métodos , Infecciones por Papillomavirus/virología , Línea Celular Tumoral , Células HeLa , Proteínas Oncogénicas Virales/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Papillomaviridae/genética , Virus del Papiloma Humano
6.
Cancers (Basel) ; 16(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38893238

RESUMEN

Background: In cancer care, the MLH1 gene is crucial for DNA mismatch repair (MMR), serving as a vital tumor suppressor. Evaluating MLH1 protein expression status, followed by analysis of MLH1 promoter methylation, has become a key diagnostic and prognostic approach. Our study investigates the complex link between MLH1 methylation and prognosis in endometrial adenocarcinoma (EA) patients. Methodology: MLH1 methylation status was accessed by a Pyrosequencing (PSQ) assay. Qualitative positivity for methylation was established if it exceeded the 11% cut-off; as well, a quantitative methylation analysis was conducted to establish correlations with clinicopathological data, relapse-free survival, and disease-free survival. Results: Our study revealed that 33.3% of patients without MLH1 methylation experienced relapses, surpassing the 23.3% in patients with methylation. Furthermore, 16.7% of patients without methylation succumbed to death, with a slightly higher rate of 17.6% in methylated patients. Qualitative comparisons highlighted that the mean methylation rate in patients experiencing relapse was 35.8%, whereas in those without relapse, it was 42.2%. This pattern persisted in disease-specific survival (DSS), where deceased patients exhibited a higher mean methylation level of 49.1% compared to living patients with 38.8%. Conclusions: Our findings emphasize the efficacy of PSQ for evaluating MLH1 methylation. While unmethylation appears to be associated with a higher relapse rate, the survival rate does not seem to be influenced by methylation. Quantitative percentages suggest that elevated MLH1 methylation is linked to relapse and mortality, though a study with a larger sample size would be essential for statistically significant results.

7.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928223

RESUMEN

Mutations affecting codon 172 of the isocitrate dehydrogenase 2 (IDH2) gene define a subgroup of sinonasal undifferentiated carcinomas (SNUCs) with a relatively favorable prognosis and a globally hypermethylated phenotype. They are also recurrent (along with IDH1 mutations) in gliomas, acute myeloid leukemia, and intrahepatic cholangiocarcinoma. Commonly reported mutations, all associated with aberrant IDH2 enzymatic activity, include R172K, R172S, R172T, R172G, and R172M. We present a case of SNUC with a never-before-described IDH2 mutation, R172A. Our report compares the methylation pattern of our sample to other cases from the Gene Expression Omnibus database. Hierarchical clustering suggests a strong association between our sample and other IDH-mutant SNUCs and a clear distinction between sinonasal normal tissues and tumors. Principal component analysis (PCA), using 100 principal components explaining 94.5% of the variance, showed the position of our sample to be within 1.02 standard deviation of the other IDH-mutant SNUCs. A molecular modeling analysis of the IDH2 R172A versus other R172 variants provides a structural explanation to how they affect the protein active site. Our findings thus suggest that the R172A mutation in IDH2 confers a gain of function similar to other R172 mutations in IDH2, resulting in a similar hypermethylated profile.


Asunto(s)
Carcinoma , Metilación de ADN , Isocitrato Deshidrogenasa , Neoplasias del Seno Maxilar , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Metilación de ADN/genética , Carcinoma/genética , Carcinoma/patología , Neoplasias del Seno Maxilar/genética , Neoplasias del Seno Maxilar/patología , Masculino , Persona de Mediana Edad , Femenino , Anciano
8.
Sci Rep ; 14(1): 14080, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890442

RESUMEN

Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.


Asunto(s)
Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Metilación de ADN , Células Madre Pluripotentes Inducidas , Megacariocitos , Mutación , Proteína Proto-Oncogénica c-fli-1 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Megacariocitos/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Trastornos de las Plaquetas Sanguíneas/patología , Activación Transcripcional , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Leucemia Mieloide Aguda , Trastornos de la Coagulación Sanguínea Heredados
9.
Mar Drugs ; 22(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786583

RESUMEN

Glycosidic linkage analysis was conducted on the unfractionated polysaccharides in alcohol-insoluble residues (AIRs) prepared from six red seaweeds (Gracilariopsis sp., Prionitis sp., Mastocarpus papillatus, Callophyllis sp., Mazzaella splendens, and Palmaria palmata) using GC-MS/FID analysis of partially methylated alditol acetates (PMAAs). The cell walls of P. palmata primarily contained mixed-linkage xylans and small amounts of sulfated galactans and cellulose. In contrast, the unfractionated polysaccharides of the other five species were rich in galactans displaying diverse 3,6-anhydro-galactose and galactose linkages with varied sulfation patterns. Different levels of cellulose were also observed. This glycosidic linkage method offers advantages for cellulose analysis over traditional monosaccharide analysis that is known for underrepresenting glucose in crystalline cellulose. Relative linkage compositions calculated from GC-MS and GC-FID measurements showed that anhydro sugar linkages generated more responses in the latter detection method. This improved linkage workflow presents a useful tool for studying polysaccharide structural variations across red seaweed species. Furthermore, for the first time, relative linkage compositions from GC-MS and GC-FID measurements, along with normalized FID and total ion current (TIC) chromatograms without peak assignments, were analyzed using principal component analysis (PCA) as a proof-of-concept demonstration of the technique's potential to differentiate various red seaweed species.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Polisacáridos , Rhodophyta , Algas Marinas , Polisacáridos/química , Algas Marinas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Rhodophyta/química , Metilación , Glicósidos/química
10.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791144

RESUMEN

Cellular myxoma is a benign soft tissue tumor frequently associated with GNAS mutation that may morphologically resemble low-grade myxofibrosarcoma. This study aimed to identify the undescribed methylation profile of cellular myxoma and compare it to myxofibrosarcoma. We performed molecular analysis on twenty cellular myxomas and nine myxofibrosarcomas and analyzed the results using the methylation-based DKFZ sarcoma classifier. A total of 90% of the cellular myxomas had GNAS mutations (four loci had not been previously described). Copy number variations were found in all myxofibrosarcomas but in none of the cellular myxomas. In the classifier, none of the cellular myxomas reached the 0.9 threshold. Unsupervised t-SNE analysis demonstrated that cellular myxomas form their own clusters, distinct from myxofibrosarcomas. Our study shows the diagnostic potential and the limitations of molecular analysis in cases where morphology and immunohistochemistry are not sufficient to distinguish cellular myxoma from myxofibrosarcoma, particularly regarding GNAS wild-type tumors. The DKFZ sarcoma classifier only provided a valid prediction for one myxofibrosarcoma case; this limitation could be improved by training the tool with a more considerable number of cases. Additionally, the classifier should be introduced to a broader spectrum of mesenchymal neoplasms, including benign tumors like cellular myxoma, whose distinct methylation pattern we demonstrated.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , Fibrosarcoma , Mixoma , Humanos , Mixoma/genética , Mixoma/diagnóstico , Mixoma/patología , Fibrosarcoma/genética , Fibrosarcoma/patología , Fibrosarcoma/diagnóstico , Fibrosarcoma/metabolismo , Persona de Mediana Edad , Femenino , Anciano , Masculino , Adulto , Mutación , Diagnóstico Diferencial , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Cromograninas/genética , Anciano de 80 o más Años , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/patología
11.
Cancers (Basel) ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791918

RESUMEN

We conducted a pilot study to analyze the differential methylation status of 20 primary acinar adenocarcinomas of the lungs. These adenocarcinomas had to be wild type in mutation analysis and had either high (TPS > 50%; n = 10) or negative (TPS < 1%; n = 10) PD-L1 status to be integrated into our study. To examine the methylation of 866,895 specific sites, we utilized the Illumina Infinium EPIC bead chip array. Both hypermethylation and hypomethylation play significant roles in tumor development, progression, and metastasis. They also impact the formation of the tumor microenvironment, which plays a decisive role in tumor differentiation, epigenetics, dissemination, and immune evasion. The gained methylation patterns were correlated with PD-L1 expression. Our analysis has identified distinct methylation patterns in lung adenocarcinomas with high and negative PD-L1 expression. After analyzing the correlation between the methylation results of genes and promoters with their pathobiology, we found that tumors with high expression of PD-L1 tend to exhibit oncogenic effects through hypermethylation. On the other hand, tumors with negative PD-L1 expression show loss of their suppressor functions through hypomethylation. The suppressor functions of hypermethylated genes and promoters are ineffective compared to simultaneously activated dominant oncogenic mechanisms. The tumor microenvironment supports tumor growth in both groups.

12.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710558

RESUMEN

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Asunto(s)
Glucanos , Glicosiltransferasas , Agua , Glucanos/química , Agua/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Streptococcus/enzimología , Solubilidad , Streptococcus mutans/enzimología
13.
Artículo en Ruso | MEDLINE | ID: mdl-38549412

RESUMEN

BACKGROUND: Methylation analysis has become a powerful diagnostic tool in modern neurooncology. This technique is valuable to diagnose new brain tumor types. OBJECTIVE: To describe the MRI and histological pattern of neuroepithelial tumor with PLAGL1 gene fusion. MATERIAL AND METHODS: We present a 6-year-old patient with small right frontal intraaxial tumor causing drug resistant epilepsy. Despite indolent preoperative clinical course and MRI features suggesting glioneuronal tumor, histological evaluation revealed characteristics of high-grade glioma, ependymoma and neuroblastoma. RESULTS: Methylation analysis of tumor DNA confirmed a new type of a recently discovered neoplasm - neuroepithelial tumor with PLAGL1 fusion (NET PLAGL1). PCR confirmed fusion of PLAGL1 and EWSR1 genes. No seizures were observed throughout the follow-up period. There was no tumor relapse a year after surgery. CONCLUSION: Methylation analysis in neurooncology is essential for unclear tumor morphology or divergence between histological and clinical data. In our case, this technique confirmed benign nature of tumor, and we preferred follow-up without unnecessary adjuvant treatment.


Asunto(s)
Glioma , Neoplasias Neuroepiteliales , Neoplasias Supratentoriales , Niño , Humanos , Proteínas de Ciclo Celular/genética , Metilación de ADN/genética , Fusión Génica , Glioma/diagnóstico , Neoplasias Neuroepiteliales/diagnóstico por imagen , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/cirugía , Neoplasias Supratentoriales/diagnóstico por imagen , Neoplasias Supratentoriales/genética , Neoplasias Supratentoriales/cirugía , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
14.
Carbohydr Polym ; 333: 121962, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494219

RESUMEN

Ulva are hardy green seaweeds that contain the sulfated polysaccharide ulvan and grow in two distinct morphologies: foliose and tubular. The authors hypothesise that ulvan from tubular species are more structurally complex than ulvans from foliose species. Herein, using standardised methods, the glycosyl linkage positions and sulfate ester substitutions of constituent monosaccharides of ulvan isolated from foliose (U. lacinulata and U. stenophylloides) and tubular (U. prolifera and U. ralfsii) species of Ulva were investigated. Comparison of native ulvans with 80 and 100 °C desulfated counterparts indicated that 4-linked rhamnose is predominantly 3-O-sulfated in all four ulvans. Ulvans from the foliose species predominantly contained →3,4)-Rhap-(1→, →4)-GlcAp-(1→ and →4)-IdoAp-(1→, collectively accounting for 67 to 81 mol% of the total linkages. In contrast, these same linkages in ulvans from the tubular species only collectively accounted for 29 to 36 mol%. Instead, ulvan from tubular species contained a combination of →2,3,4)-Rhap-(1→, terminal Rhap-(1→, →4)-GlcAp-(1→, →4)-Xylp-(1→, and/or →4)-Galp-(1→ in high proportions; some of the latter three residues were also likely O-2 sulfated. The results presented here suggest that ulvan from foliose species are predominantly unbranched polysaccharides composed of repeat disaccharides while ulvans from tubular species contain a greater diversity of branch and sulfate substitution locations.


Asunto(s)
Algas Marinas , Ulva , Ulva/química , Polisacáridos/química , Sulfatos/química
15.
Front Neurol ; 15: 1258831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361638

RESUMEN

Objective: Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is one of the most common forms of autosomal-dominant muscular dystrophies characterized by variable disease penetrance due to shortened D4Z4 repeat units on 4q35. The molecular diagnosis of FSHD1 is usually made by Southern blotting, which is complex, time-consuming, and lacks clinical practicality. Therefore, in this study, optical genome mapping (OGM) is employed for the genetic diagnosis of FSHD1. Furthermore, epigenetic heterogeneity is determined from methylation analysis. Methods: Genomic DNA samples from four members of the same family were subjected to whole-exome sequencing. OGM was used to identify structural variations in D4Z4, while sodium bisulfite sequencing helped identify the methylation levels of CpG sites in a region located distally to the D4Z4 array. A multidisciplinary team collected the clinical data, and comprehensive family analyses aided in the assessment of phenotypes and genotypes. Results: Whole-exome sequencing did not reveal variants related to clinical phenotypes in the patients. OGM showed that the proband was a compound heterozygote for the 4qA allele with four and eight D4Z4 repeat units, whereas the affected younger brother had only one 4qA allele with four D4Z4 repeat units. Both the proband and her younger brother were found to display asymmetric weakness predominantly involving the facial, shoulder girdle, and upper arm muscles, whereas the younger brother had more severe clinical symptoms. The proband's father, who was found to be normal after a neurological examination, also carried the 4qA allele with eight D4Z4 repeat units. The unaffected mother exhibited 49 D4Z4 repeat units of the 4qA allele and a minor mosaic pattern with four D4Z4 repeat units of the 4qA allele. Consequently, the presence of the 4qA allele in the four D4Z4 repeat units strongly pointed to the occurrence of maternal germline mosaicism. The CpG6 methylation levels were lower in symptomatic patients compared to those in the asymptomatic parents. The older sister had lower clinical scores and ACSS and higher CpG6 methylation levels than that of her younger brother. Conclusions: In this study, two siblings with FSHD1 with phenotypically normal parents were identified by OGM. Our findings suggest that the 4qA allele of four D4Z4 repeats was inherited through maternal germline mosaicism. The clinical phenotype heterogeneity is influenced by the CpG6 methylation levels. The results of this study greatly aid in the molecular diagnosis of FSHD1 and in also understanding the clinical phenotypic variability underlying the disease.

16.
Virchows Arch ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347267

RESUMEN

Ectopic pituitary neuroendocrine tumors (PitNET)/adenomas are rare and diagnostically challenging extra-sellar tumors. Previous studies have demonstrated the impact of epigenomic analyses in the diagnostics of sellar neoplasms and characterized the close relationship of epigenomic signatures and cellular origins of PitNET/adenomas. As of today, little is known about the pathogenesis of ectopic PitNET/adenomas, and epigenomic analyses have not been performed in these rare tumors. We report on the clinical course of an 81-year-old patient with sphenoid ectopic sparsely granulated corticotroph PitNET/adenoma and deploy genome-wide DNA methylation analysis to compare its methylation profile to a reference cohort of sellar neoplasms. Genome-wide methylation analysis revealed an epigenomic profile analogous to reference sellar corticotroph PitNET/adenomas, and the copy number variation profile showed loss of chromosomes 18 and 22. The methylation profile shows concordance with sellar corticotroph PitNET/adenomas suggesting a common cellular origin and confirming the reliability of methylation analyses as a diagnostic method in these rare tumors. This is the first data suggesting that epigenetic profiles of ectopic PitNET/adenoma do not differ from their sellar counterparts.

17.
Fitoterapia ; 174: 105841, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296170

RESUMEN

Prunella vulgaris (PV) is a medicine and food homologous plant, but its quality evaluation seldom relies on the polysaccharides (PVPs). In this work, we established the multi-level fingerprinting and in vitro anti-inflammatory evaluation approaches to characterize and compare the polysaccharides of P. vulgaris collected from the major production regions in China. PVPs prepared from 22 batches of samples gave the content variation of 5.76-24.524 mg/g, but displayed high similarity in the molecular weight distribution. Hydrolyzed oligosaccharides with degrees of polymerization 2-14 were characterized with different numbers of pentose and hexose by HILIC-MS. The tested 22 batches of oligosaccharides exhibited visible differences in peak abundance, which failed to corelate to their production regions. All the PVPs contained Gal, Xyl, and Ara, as the main monosaccharides. Eleven batches among the tested PVPs showed the significant inhibitory effects on NO production on LPS-induced RAW264.7 cells at 10 µg/mL, but the exerted efficacy did not exhibit correlation with the production regions. Conclusively, we, for the first time, investigated the chemical features of PVPs at three levels, and assessed the chemical and anti-inflammatory variations among the different regions of P. vulgaris samples.


Asunto(s)
Prunella , Prunella/química , Estructura Molecular , Polisacáridos/farmacología , Polisacáridos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Oligosacáridos
18.
Head Neck ; 46(4): 728-739, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169119

RESUMEN

BACKGROUND: We evaluated the prognostic role of 13-gene DNA methylation analysis by oral brushing repeatedly performed during the follow-up of patients surgically treated for oral cancer. METHODS: This is a nested case-control study including 61 patients for a total of 64 outcomes (2/61 patients experienced multiple relapses). Samples were collected at baseline (4-10 months after OSCC resection) and repeatedly every 4-10 months until relapse or death. DNA methylation scores were classified as persistently positive, persistently negative, or mixed. RESULTS: Twenty cases who had persistently positive scores and 30 cases with mixed scores had, respectively, an almost 42-fold (p < 0.001) and 32-fold (p = 0.006) higher likelihood of relapse, compared to 14 patients with persistently negative scores. The last score before reoccurrence was positive in 18/19 secondary events. CONCLUSIONS: The 13-gene DNA methylation analysis may be considered for the surveillance of patients treated for oral carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Metilación de ADN , Estudios de Casos y Controles , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/cirugía , Recurrencia Local de Neoplasia/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/cirugía , Recurrencia
19.
Biochem Biophys Res Commun ; 696: 149488, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219485

RESUMEN

Enzymatic methyl-seq (EM-seq), an enzyme-based method, identifies genome-wide DNA methylation, which enables us to obtain reliable methylome data from purified genomic DNA by avoiding bisulfite-induced DNA damage. However, the loss of DNA during purification hinders the methylome analysis of limited samples. The crude DNA extraction method is the quickest and minimal sample loss approach for obtaining useable DNA without requiring additional dissolution and purification. However, it remains unclear whether crude DNA can be used directly for EM-seq library construction. In this study, we aimed to assess the quality of EM-seq libraries prepared directly using crude DNA. The crude DNA-derived libraries provided appropriate fragment sizes and concentrations for sequencing similar to those of the purified DNA-derived libraries. However, the sequencing results of crude samples exhibited lower reference sequence mapping efficiencies than those of the purified samples. Additionally, the lower-input crude DNA-derived sample exhibited a marginally lower cytosine-to-thymine conversion efficiency and hypermethylated pattern around gene regulatory elements than the higher-input crude DNA- or purified DNA-derived samples. In contrast, the methylation profiles of the crude and purified samples exhibited a significant correlation. Our findings indicate that crude DNA can be used as a raw material for EM-seq library construction.


Asunto(s)
Metilación de ADN , ADN , Biblioteca de Genes , Secuencia de Bases , ADN/genética , ADN/análisis , Clonación Molecular , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sulfitos
20.
Hepatol Res ; 54(3): 284-299, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37906571

RESUMEN

AIM: The aim of this study was to clarify the significance of DNA methylation alterations of cryptogenic hepatocellular carcinomas (HCCs). METHODS: Using the Infinium assay, we performed genome-wide DNA methylation analysis of 250 liver tissue samples, including noncancerous liver tissue (U-N) and corresponding cancerous tissue (U-T) from patients with cryptogenic HCC without a history of excessive alcohol use and hepatitis virus infection, and whose U-N samples showed no remarkable histological features (no microscopic evidence of simple steatosis, any form of hepatitis including nonalcoholic steatohepatitis, or liver cirrhosis). RESULTS: We identified 3272 probes that showed significant differences of DNA methylation levels between U-N and normal liver tissue samples from patients without HCC, indicating that a distinct DNA methylation profile had already been established at the precancerous U-N stage. U-Ns have a DNA methylation profile differing from that of noncancerous liver tissue of patients with nonalcoholic steatohepatitis-related, viral hepatitis-related, and alcoholic liver disease-related HCCs. Such DNA methylation alterations in U-Ns were inherited by U-Ts. The U-Ns showed DNA methylation alteration of ADCY5, resulting in alteration of its mRNA expression, whereas noncancerous liver tissue of patients with nonalcoholic steatohepatitis-, viral hepatitis-, or alcoholic liver disease-related HCCs did not. DNA methylation levels of MICAL2 and PLEKHG2 in U-Ts were correlated with larger tumor diameter and portal vein involvement, respectively. CONCLUSIONS: U-N-specific DNA hypermethylation of ADCY5 may have significance, even from the precancerous stage in liver showing no remarkable histological features. DNA hypomethylation of MICAL2 and PLEKHG2 may determine the clinicopathological features of cryptogenic HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA