Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(38): e202401283, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38695306

RESUMEN

Understanding the interaction between fullerene (C60) and perovskite surfaces is pivotal for advancing the efficiency and stability of perovskite solar cells. In this study, we investigate the adsorption behavior of C60 on methylammonium lead iodide (MAPbI3) surfaces using periodic density functional theory calculations. We explore various surface terminations and defect configurations to elucidate the influence of surface morphology on the C60-perovskite interaction, computing the adsorption energy and transfer of charge. Our results reveal distinct adsorption energies and charge transfer mechanisms for different surface terminations, shedding light on the role of surface defects in modifying the electronic structure and stability of perovskite materials. Furthermore, we provide insights into the potential of C60 to passivate surface defects, playing a relevant role in the surface reconstruction after the formation of defects. This comprehensive understanding of C60-perovskite interactions offers valuable guidelines about the role of fullerenes on surface structure and reconstruction.

2.
ACS Appl Mater Interfaces ; 15(37): 43822-43834, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672479

RESUMEN

Uniform optoelectronic quality of metal halide perovskite (MHP) films is critical for scalable production in large-area applications, such as photovoltaics and displays. While vapor-based MHP film deposition is advantageous for this purpose, achieving film uniformity can be challenging due to uneven temperature distribution and precursor concentration over the substrate. Here, we propose optimized substrate orientations for the vapor-based fabrication of homogeneous MAPbI3 thin films, involving a PbI2 primary layer deposition and subsequent conversion using vaporized methylammonium iodide (MAI). Leveraging computational fluid dynamics (CFD) simulations, we confirm that vertical positioning during the PbI2 layer growth yields a uniform film with a narrow temperature distribution and minimal boundary layer thickness. However, during the subsequent conversion step, horizontal substrate positioning results in spatially more uniform MAPbI3 thickness and grain size compared to the vertical placement due to enhanced MAI intercalation. From this optimized substrate positioning, we observe substantial optical homogeneity across the substrate on a centimeter scale, along with uniform and enhanced optoelectronic device performance within photodetector arrays. Our results offer a potential path toward the scalable production of highly uniform perovskite films.

3.
Chemphyschem ; 24(18): e202300210, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37394623

RESUMEN

In this study, the features of resistive random access memory (RRAM) employing a straightforward Cr/MAPbI3 /FTO three-layer structure have been examined and clarified. The device displays various resistance switching (RS) behavior at various sweep voltages between 0.5 and 5 V. The RS effect has a conversion in the direction of the SET and RESET processes during sweeping for a number of cycles at a specific voltage. The directional change of the RS processes corresponds to the dominant transition between the generation/recombination of iodide ion and vacancy in the MAPbI3 perovskite layer and the electrochemical metallization of the Cr electrode under the influence of an electric field, which results in the conductive filament (CF) formation/rupture. At each stage, these processes are controlled by specific charge conduction mechanisms, including Ohmic conduction, space-charge-limited conduction (SCLC), and variable-range hopping (VRH). By identifying the biased voltage and the quantity of voltage sweep cycles, one can take a new approach to control or modulate the pathways for effective charge transport. This new approach is made possible by an understanding of the RS characteristics and the corresponding mechanisms causing the variation of RS behavior in the structure.

4.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374462

RESUMEN

Perovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field. Since degradation processes are spatially heterogeneous, the behaviors of perovskite films under an applied electric field should be visualized with nanoscale resolution. Herein, we report a direct nanoscale visualization of methylammonium (MA+) cation dynamics in methylammonium lead iodide (MAPbI3) films during field-induced degradation, using infrared scattering-type scanning near-field microscopy (IR s-SNOM). The obtained data reveal that the major aging pathways are related to the anodic oxidation of I- and the cathodic reduction of MA+, which finally result in the depletion of organic species in the channel of the device and the formation of Pb. This conclusion was supported by a set of complementary techniques such as time-of-flight secondary ion mass spectrometry (ToF-SIMS), photoluminescence (PL) microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved field-induced degradation dynamics of hybrid perovskite absorbers and the identification of more promising materials resistant to the electric field.

5.
ACS Appl Mater Interfaces ; 15(23): 28008-28022, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37253100

RESUMEN

Since the emergence of organometal halide perovskite (OMP) solar cells, there has been growing interest in the benefits of incorporating polymer additives into the perovskite precursor, in terms of both photovoltaic device performance and perovskite stability. In addition, there is interest in the self-healing properties of polymer-incorporated OMPs, but the mechanisms behind these enhanced characteristics are still not fully understood. Here, we study the role of poly(2-hydroxyethyl methacrylate) (pHEMA) in improving the stability of methylammonium lead iodide (MAPI, CH3NH3PbI3) and determine a mechanism for the self-healing of the perovskite-polymer composite following exposure to atmospheres of differing relative humidity, using photoelectron spectroscopy. Varying concentrations of pHEMA (0-10 wt %) are incorporated into a PbI2 precursor solution during the conventional two-step fabrication method for producing MAPI. It is shown that the introduction of pHEMA results in high-quality MAPI films with increased grain size and reduced PbI2 concentration compared with pure MAPI films. Devices based on pHEMA-MAPI composites exhibit an improved photoelectric conversion efficiency of 17.8%, compared with 16.5% for a pure MAPI device. pHEMA-incorporated devices are found to retain 95.4% of the best efficiency after ageing for 1500 h in 35% RH, compared with 68.5% achieved from the pure MAPI device. The thermal and moisture tolerance of the resulting films is investigated using X-ray diffraction, in situ X-ray photoelectron spectroscopy (XPS), and hard XPS (HAXPES). It is found that exposing the pHEMA films to cycles of 70 and 20% relative humidity leads to a reversible degradation, via a self-healing process. Angle-resolved HAXPES depth-profiling using a non-destructive Ga Kα source shows that pHEMA is predominantly present at the surface with an effective thickness of ca. 3 nm. It is shown using XPS that this effective thickness reduces with increasing temperature. It is found that N is trapped in this surface layer of pHEMA, suggesting that N-containing moieties, produced during reaction with water at high humidity, are trapped in the pHEMA film and can be reincorporated into the perovskite when the humidity is reduced. XPS results also show that the inclusion of pHEMA enhances the thermal stability of MAPI under both UHV and 9 mbar water vapor pressure.

6.
ACS Appl Mater Interfaces ; 15(21): 25932-25941, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37196351

RESUMEN

The polymer additive strategy provides a facile and cost-effective way for passivating defects and trap sites at the grain boundaries and interfaces and acting as a barrier against the external degradation factors in perovskite-based devices. However, limited literature exists discussing the integration of hydrophobic and hydrophilic polymer additives in the form of a copolymer within the perovskite films. The inherent difference in the chemical structure of these polymers and their interaction with perovskite components and the environment leads to critical differences in the respective polymer-perovskite films. The current work utilizes both homopolymer and copolymer strategies to understand the effect of polystyrene (PS) and polyethylene glycol (PEG), two common commodity polymers, over the physicochemical and electro-optical properties of the as-fabricated devices and the distribution of polymer chains across the depth of perovskite films. The hydrophobic PS integrated perovskite devices PS-MAPbI3, 36 PS-b-1.4-PEG-MAPbI3, and 21.5 PS-b-20-PEG-MAPbI3 outperform hydrophilic PEG-MAPbI3 and pristine MAPbI3 devices and exhibit higher photocurrent, lower dark currents, and greater stability. A critical difference is also observed in the stability of devices, where rapid decay of performance is observed in the pristine MAPbI3 films. The deterioration in performance is highly limited for hydrophobic polymer-MAPbI3 films as they maintain 80% of their initial performance.

7.
ACS Nano ; 17(6): 5306-5315, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36916650

RESUMEN

Methylammonium lead iodide (MAPbI3) perovskite nanocrystals (NCs) offer desirable optoelectronic properties with prospective utility in photovoltaics, lasers, and light-emitting diodes (LEDs). Structural rearrangements of MAPbI3 in response to photoexcitation, such as lattice distortions and phase transitions, are of particular interest, as these engender long carrier lifetime and bolster carrier diffusion. Here, we use variable temperature X-ray diffraction (XRD) and synchrotron-based transient X-ray diffraction (TRXRD) to investigate lattice response following ultrafast optical excitation. MAPbI3 NCs are found to slowly undergo a phase transition from the tetragonal to a pseudocubic phase over the course of 1 ns under 0.02-4.18 mJ/cm2 fluence photoexcitation, with apparent nonthermal lattice distortions attributed to polaron formation. Lattice recovery exceeds time scales expected for both carrier recombination and thermal dissipation, indicating meta-stability likely due to the proximal phase transition, with symmetry-breaking along equatorial and axial directions. These findings are relevant for fundamental understanding and applications of structure-function properties.

8.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558307

RESUMEN

Halide perovskites-based solar cells are drawing significant attention due to their high efficiency, versatility, and affordable processing. Hence, halide perovskite solar cells have great potential to be commercialized. However, the halide perovskites (HPs) are not stable in an ambient environment. Thus, the instability of the perovskite is an essential issue that needs to be addressed to allow its rapid commercialization. In this work, WS2 nanoparticles (NPs) are successfully implemented on methylammonium lead iodide (MAPbI3) based halide perovskite solar cells. The main role of the WS2 NPs in the halide perovskite solar cells is as stabilizing agent. Here the WS2 NPs act as heat dissipater and charge transfer channels, thus allowing an effective charge separation. The electron extraction by the WS2 NPs from the adjacent MAPbI3 is efficient and results in a higher current density. In addition, the structural analysis of the MAPbI3 films indicates that the WS2 NPs act as nucleation sites, thus promoting the formation of larger grains of MAPbI3. Remarkably, the absorption and shelf life of the MAPbI3 layers have increased by 1.7 and 4.5-fold, respectively. Our results demonstrate a significant improvement in stability and solar cell characteristics. This paves the way for the long-term stabilization of HPs solar cells by the implementation of WS2 NPs.

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144995

RESUMEN

Organic-inorganic lead halide perovskites materials have emerged as an innovative candidate in the development of optoelectronic and photovoltaic devices, due to their appealing electrical and optical properties. Herein, mix halide single-layer (~95 nm) and multilayer (average layer ~87 nm) CH3NH3PbIBr2 thinfilms were grown by a one-step spin coating method. In this study, both films maintained their perovskite structure along with the appearance of a pseudo-cubic phase of (200) at 30.16°. Single-layer and multilayer CH3NH3PbIBr2 thinfilms displayed leaky ferroelectric behavior, and multilayered thinfilm showed a leakage current of ~5.06 × 10-6 A and resistivity of ~1.60 × 106 Ω.cm for the applied electric field of 50 kV/cm. However, optical analysis revealed that the absorption peak of multilayered perovskite is sharper than a single layer in the visible region rather than infrared (IR) and near-infrared region (NIR). The band gap of the thinfilms was measured by Tauc plot, giving the values of 2.07 eV and 1.81 eV for single-layer and multilayer thinfilms, respectively. The structural analysis has also been performed by Fourier transform infrared spectroscopy (FTIR). Moreover, the fabricated CH3NH3PbIBr2 as an absorber layer for photoelectric cell demonstrated a power conversion efficiency of 7.87% and fill factor of 72%. Reported electrical, optical and photoelectric efficiency-based results suggest that engineered samples are suitable candidates for utilization in optoelectronic and photovoltaic devices.

10.
Rep Prog Phys ; 85(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35038679

RESUMEN

In methylammonium lead iodide (MAPbI3), a slow recombination process of photogenerated carriers has often been considered to be the most intriguing property of the material resulting in high-efficiency perovskite solar cells. In spite of intense research over a decade or so, a complete understanding of carrier recombination dynamics in MAPbI3has remained inconclusive. In this regard, several microscopic processes have been proposed so far in order to explain the slow recombination pathways (both radiative and non-radiative), such as the existence of shallow defects, a weak electron-phonon coupling, presence of ferroelectric domains, screening of band-edge charges through the formation of polarons, occurrence of the Rashba splitting in the band(s), and photon-recycling in the material. Based on the up-to-date findings, we have critically assessed each of these proposals/models to shed light on the origin of a slow recombination process in MAPbI3. In this review, we have presented the interplay between the mechanisms and our views/perspectives in determining the likely processes, which may dictate the recombination dynamics in the material. We have also deliberated on their interdependences in decoupling contributions of different recombination processes.

11.
ACS Appl Mater Interfaces ; 13(49): 58956-58965, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851102

RESUMEN

The rigid and brittle nature of methylammonium lead iodide (MAPbI3) polycrystalline films limits their application in stretchable devices due to rapid deterioration in performance on cycling. By incorporation of polymer chains in the MAPbI3 films, a strategy to alter the mechanical modulus and the viscoelastic nature of the films has been developed. Combining this with flexible nanochain electrodes, highly stretchable and stable perovskite devices have been fabricated. The resultant polymer-MAPbI3 photodetector exhibits ultralow dark currents (∼10-11 A) and high light switching ratios (∼103) and maintains 75% of performance after 30 days. The viscoelastic nature and lower modulus of the polymer improve the energy dissipation in the polymer-MAPbI3 devices; as a result, they maintain 52% of the device performance after 10000 stretching cycles at 50% strain. The difference in the mechanical behavior is clearly observed in the failure mode of the two films. While rapid catastrophic cracking is observed in MAPbI3 films, the intensity and size of such crack formation are highly limited in polymer-MAPbI3 films, which prevent their failure.

12.
Molecules ; 26(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34500566

RESUMEN

In recent years, the study of organic-inorganic halide perovskite as an optoelectronics material has been a significant line of research, and the power conversion efficiency of solar cells based on these materials has reached 25.5%. However, defects on the surface of the film are still a problem to be solved, and oxygen plasma is one of the ways to passivate surface defects. In order to avoid destroying the methylammonium lead iodide (MAPbI3), the influence of plasma powers on film was investigated and the cesium triiodide (CsPbI3) quantum dots (QDs) were doped into the film. In addition, it was found that oxygen plasma can enhance the mobility and carrier concentration of the MAPbI3 film.

13.
Adv Mater ; 33(40): e2008122, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34402118

RESUMEN

Hybrid organic-inorganic perovskites have attracted substantial interest as the most favorable prospective material for efficient photovoltaic and optoelectronic devices. However, their extreme sensitivity to electron beam radiation makes it difficult to obtain their intrinsic structure by transmission electron microscopy and can even lead to significant misidentifications. In 2018, the coexistence of methylammonium lead iodide (MAPbI3 ) in the cubic and tetragonal phase using electron microscopy and electron diffraction techniques was reported in article "Self-Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite". Herein, however, that claim is challenged by comparing their experimental data to simulated diffraction patterns and arguing that their perovskite samples may have been damaged due to excessive electron beam irradiation. Consequently, true phase coexistence was not observed in that previously reported work, rather merely the decomposition products of MAPbI3 .

14.
Molecules ; 26(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063657

RESUMEN

In this study, we describe composited perovskite films based on the doping of lead cesium triiodide (CsPbI3) quantum dots (QDs) into methylammonium lead iodide (MAPbI3). CsPbI3 QDs and MAPbI3 were prepared by ligand-assisted re-precipitation and solution mixing, respectively. These films were optimized by oxygen plasma treatment, and the effect of powers from 0 to 80 W on the structural properties of the composited perovskite films is discussed. The experimental results showed that the light-harvesting ability of the films was enhanced at 20 W. The formation of the metastable state (lead(II) oxide and lead tetroxide) was demonstrated by peak differentiation-imitating. A low power enhanced the quality of the films due to the removal of organic impurities, whereas a high power caused surface damage in the films owing to the severe degradation of MAPbI3.

15.
ACS Nano ; 15(3): 4165-4172, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33661603

RESUMEN

An emerging class of methylammonium lead iodide (MAPbI3)-based Ruddlesden-Popper (RP) phase perovskites, BA2MAn-1PbnI3n+1 (n = 1-7), exhibit enhanced stability to environmental conditions relative to MAPbI3, yet still degrade at elevated temperatures. We experimentally determine the thermal conductivities of these layered RP phases for n = 1-6, where n defines the number of repeated perovskite octahedra per layer. We measure thermal conductivities of 0.37 ± 0.13/0.12, 0.17 ± 0.08/0.07, 0.21 ± 0.05/0.04, and 0.19 ± 0.04/0.03 W/m·K in thin films of n = 1-4 and 0.08 ± 0.06/0.04, 0.06 ± 0.04/0.03, 0.06 ± 0.03/0.03, and 0.08 ± 0.07/0.04 W/m·K in single crystals of n = 3-6. With the exception of n = 1, these thermal conductivities are lower than the range of 0.34-0.50 W/m·K reported for single-crystal MAPbI3. Reduced-order lattice dynamics modeling suggests that the initially decreasing trend of thermal conductivity in similarly oriented perovskites with increasing n may result from the transport properties of coherent phonons, emergent from the superstructure, that do not scatter at the interfaces of organic butylammonium chains and perovskite octahedra. Reduced group velocity of coherent phonons in n = 3-6, a consequence of band flattening in the phonon dispersion, is primarily responsible for their ultralow thermal conductivities. Similar effects on thermal conductivity have been experimentally demonstrated in deposited superlattices, but never in naturally defined materials such as RP phases. GIWAXS measurements reveal that higher n RP phase thin films are less orientationally controlled and therefore possess apparently elevated thermal conductivities relative to single crystals of the same n.

16.
Nano Lett ; 21(1): 597-604, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258607

RESUMEN

Although lead halide perovskites are demonstrated to be promising photocatalysts for hydrogen evolution from hydrogen halide splitting, it still remains challenging to fabricate efficient and stable catalysts. Here MoS2 nanoflowers with abundant active sites are assembled with methylammonium lead iodide (MAPbI3) microcrystals to form a new heterostructure. Its hydrogen evolution rate can reach up to about 30 000 µmol g-1 h-1, which is more than 1000-fold higher than pristine MAPbI3 under visible light irradiation (λ ≥ 420 nm). Importantly, the solar HI splitting efficiency reaches 7.35%, one of the highest efficiencies so far. The introduction of MoS2 with proper band alignment and unsaturated species can efficiently promote the charge separation and afford more active sites for H2 production. This finding not only provides a highly efficient and stable photocatalyst for hydrogen evolution but also offers a useful modification strategy on lead halide perovskites.

17.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374344

RESUMEN

In this study, we improved the photovoltaic (PV) properties and storage stabilities of inverted perovskite solar cells (PVSCs) based on methylammonium lead iodide (MAPbI3) by employing bathocuproine (BCP)/poly(methyl methacrylate) (PMMA) and BCP/polyvinylpyrrolidone (PVP) as hole-blocking and electron-transporting interfacial layers. The architecture of the PVSCs was indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/MAPbI3/[6,6]-phenyl-C61-butyric acid methyl ester/BCP based interfacial layer/Ag. The presence of PMMA and PVP affected the morphological stability of the BCP and MAPbI3 layers. The storage-stability of the BCP/PMMA-based PVSCs was enhanced significantly relative to that of the corresponding unmodified BCP-based PVSC. Moreover, the PV performance of the BCP/PVP-based PVSCs was enhanced when compared with that of the unmodified BCP-based PVSC. Thus, incorporating hydrophobic polymers into BCP-based hole-blocking/electron-transporting interfacial layers can improve the PV performance and storage stability of PVSCs.

18.
ACS Appl Mater Interfaces ; 12(31): 35201-35210, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32700521

RESUMEN

Low-temperature solution-processed methylammonium lead iodide (MAPbI3) crystalline films have shown outstanding performance in optoelectronic devices. However, their high dark current and high noise equivalent power prevent their application in broad-band photodetectors. Here, we applied a facile solution-based antisolvent strategy to fabricate a hybrid structure of CuInSe2 quantum dots (CISe QDs) embedded into a MAPbI3 matrix, which not only enhances the photodetector responsivity, showing a large on/off ratio of 104 at 2 V bias compared with the bare perovskite films, but also significantly (for over 7 days) improves the device stability, with hydrophobic ligands on the CuInSe2 QDs acting as a barrier against the uptake of environmental moisture. MAPbI3/CISe QD-based lateral photodetectors exhibit high responsivities of >0.5 A/W and 10.4 mA/W in the visible and near-infrared regions, respectively, partly because of the formation of a type II interface between the respective semiconductors but most significantly because of the efficient trap-state passivation of the perovskite grain surfaces, and the reduction in the twinning-induced trap density, which stems from both CISe QDs and their organic ligands. A large specific detectivity of 2.2 × 1012 Jones at 525 nm illumination (1 µW/cm2), a fast fall time of 236 µs, and an extremely low noise equivalent power of 45 fW/Hz1/2 have been achieved.

19.
ACS Appl Mater Interfaces ; 12(6): 7135-7143, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31961122

RESUMEN

In methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs), the device performance is strongly influenced by the TiO2 electron transport layer (ETL). Typically, the ETL needs to simultaneously be thin and pinhole-free to have high transmittance and avoid shunting. In this work, we develop an "in situ solidification" process following spin coating in which the titanium-based precursor (titanium(diisopropoxide) bis(2,4-pentanedionate)) is dried under vacuum to rapidly achieve continuous TiO2 layers. We refer to this as "gas-phase quenching". This results in thin (60 ± 10 nm), uniform, and pinhole-free TiO2 films. The PSCs based on the gas-phase quenched TiO2 exhibits improved power conversion efficiency, with a median value of 18.23% (champion value of 20.43%), compared to 9.03 and 14.09% for the untreated devices. Gas-phase quenching is further shown to be effective in enabling efficient charge transfer at the MAPbI3/TiO2 heterointerface. Furthermore, the stability of the gas-phase quenched devices is enhanced in ambient air as well as under 1 sun illumination. In addition, we achieve 12.1% efficiency in upscaled devices (1.1 cm2 active area).

20.
ACS Appl Mater Interfaces ; 11(30): 27279-27287, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31265242

RESUMEN

This work introduces a piezoelectric-pyroelectric nanogenerator (P-PNG) based on methylammonium lead iodide (CH3NH3PbI3) incorporated electrospun poly(vinylidene fluoride) (PVDF) nanofibers that are able to harvest mechanical and thermal energies. During the application of a periodic compressive contact force at a frequency of 4 Hz, an output voltage of ∼220 mV is generated. The P-PNG has a piezoelectric coefficient (d33) of ∼19.7 pC/N coupled with a high durability (60 000 cycles) and quick response time (∼1 ms). The maximum generated output power density (∼0.8 mW/m2) is sufficient to charge up a variety of capacitors, with the potential to replace an external power supply to drive portable devices. In addition, upon exposure to cyclic heating and cooling at a temperature of 38 K, a pyroelectric output current of 18.2 pA and a voltage of 41.78 mV were achieved. The fast response time of 1.14 s, reset time of 1.25 s, and pyroelectric coefficient of ∼44 pC/m2 K demonstrate a self-powered temperature sensing capability of the P-PNG. These characteristics make the P-PNG suitable for flexible piezoelectric-pyroelectric energy harvesting for self-powered electronic devices.


Asunto(s)
Suministros de Energía Eléctrica , Metilaminas/química , Nanofibras/química , Yoduros/química , Plomo/química , Transición de Fase , Polivinilos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA