Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 323, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907777

RESUMEN

Ten strains of psychrotolerant methylotrophic bacteria were isolated from the samples collected in Larsemann and Bunger Hills (Antarctica). Most of the isolates are assigned to the genus Pseudomonas, representatives of the genera Janthinobacterium, Massilia, Methylotenera and Flavobacterium were also found. Majority of isolates were able to grow on a wide range of sugars, methylamines and other substrates. Optimal growth temperatures for the isolated strains varied from 6 °C to 28 °C. The optimal concentration of NaCl was 0.5-2.0%. The optimal pH values of the medium were 6-7. It was found that three strains synthesized indole-3-acetic acid on a medium with L-tryptophan reaching 11-12 µg/ml. The values of intracellular carbohydrates in several strains exceeded 50 µg/ml. Presence of calcium-dependent and lanthanum-dependent methanol dehydrogenase have been shown for some isolates. Strains xBan7, xBan20, xBan37, xBan49, xPrg27, xPrg48, xPrg51 showed the presence of free amino acids. Bioprospection of Earth cryosphere for such microorganisms has a potential in biotechnology.


Asunto(s)
Biotecnología , Regiones Antárticas , Filogenia , Ácidos Indolacéticos/metabolismo , Methylobacteriaceae/genética , Methylobacteriaceae/aislamiento & purificación , Methylobacteriaceae/metabolismo , Methylobacteriaceae/clasificación , Methylobacteriaceae/enzimología , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Frío , Cloruro de Sodio/metabolismo , Medios de Cultivo/química , Triptófano/metabolismo
2.
Microorganisms ; 12(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543520

RESUMEN

Considering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures of Methylocaldum species have been detected in many terrestrial and aquatic ecosystems. A small set of representatives of this genus has been isolated and maintained in culture. The genus is commonly described as moderately thermophilic, with the growth optimum reaching 50 °C for some strains. Here, we present a comparative analysis of genomes of three Methylocaldum strains-two terrestrial M. szegediense strains (O-12 and Norfolk) and one marine strain, Methylocaldum marinum (S8). The examination of the core genome inventory of this genus uncovers significant redundancy in primary metabolic pathways, including the machinery for methane oxidation (numerous copies of pmo genes) and methanol oxidation (duplications of mxaF, xoxF1-5 genes), three pathways for one-carbon (C1) assimilation, and two methods of carbon storage (glycogen and polyhydroxyalkanoates). We also investigate the genetics of melanin production pathways as a key feature of the genus.

3.
Chembiochem ; 25(5): e202300811, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38269599

RESUMEN

Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Oxidorreductasas de Alcohol/química , Citocromos c/química , Malato Deshidrogenasa
4.
Microbes Environ ; 38(4)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38092408

RESUMEN

The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylococcus capsulatus , Elementos de la Serie de los Lantanoides/metabolismo , Metanol/metabolismo , Metano/metabolismo , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Synth Syst Biotechnol ; 8(3): 386-395, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37342805

RESUMEN

Methanol is a promising one-carbon feedstock for biomanufacturing, which can be sustainably produced from carbon dioxide and natural gas. However, the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide (NAD+)-dependent methanol dehydrogenase (Mdh) that oxidizes methanol to formaldehyde. Herein, the neutrophilic and mesophilic NAD+-dependent Mdh from Bacillus stearothermophilus DSM 2334 (MdhBs) was subjected to directed evolution for enhancing the catalytic activity. The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants. MdhBs variants with up to 6.5-fold higher Kcat/KM value for methanol were screened from random mutation libraries. The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity. The beneficial T153P mutation changes the interaction network of this residue and breaks the α-helix important for substrate binding into two short α-helices. Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve MdhBs, and this study provides an efficient strategy for directed evolution of Mdh.

6.
Bioengineering (Basel) ; 10(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37106602

RESUMEN

The naturally occurring one-carbon assimilation pathways for the production of acetyl-CoA and its derivatives often have low product yields because of carbon loss as CO2. We constructed a methanol assimilation pathway to produce poly-3-hydroxybutyrate (P3HB) using the MCC pathway, which included the ribulose monophosphate (RuMP) pathway for methanol assimilation and non-oxidative glycolysis (NOG) for acetyl-CoA (precursor for PHB synthesis) production. The theoretical product carbon yield of the new pathway is 100%, hence no carbon loss. We constructed this pathway in E. coli JM109 by introducing methanol dehydrogenase (Mdh), a fused Hps-phi (hexulose-6-phosphate synthase and 3-phospho-6-hexuloisomerase), phosphoketolase, and the genes for PHB synthesis. We also knocked out the frmA gene (encoding formaldehyde dehydrogenase) to prevent the dehydrogenation of formaldehyde to formate. Mdh is the primary rate-limiting enzyme in methanol uptake; thus, we compared the activities of three Mdhs in vitro and in vivo and then selected the one from Bacillus methanolicus MGA3 for further study. Experimental results indicate that, in agreement with the computational analysis results, the introduction of the NOG pathway is essential for improving PHB production (65% increase in PHB concentration, up to 6.19% of dry cell weight). We demonstrated that PHB can be produced from methanol via metabolic engineering, which provides the foundation for the future large-scale use of one-carbon compounds for biopolymer production.

7.
Appl Environ Microbiol ; 89(1): e0141322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36645275

RESUMEN

Two methanol dehydrogenases (MDHs), MxaFI and XoxF, have been characterized in methylotrophic and methanotrophic bacteria. MxaFI contains a calcium ion in its active site, whereas XoxF contains a lanthanide ion. Importantly, the expression of MxaFI and XoxF is inversely regulated by lanthanide bioavailability, i.e., the "lanthanide switch." To reveal the genetic and environmental factors affecting the lanthanide switch, we focused on two Methylosinus trichosporium OB3b mutants isolated during routine cultivation. In these mutants, MxaF was constitutively expressed, but lanthanide-dependent XoxF1 was not, even in the presence of 25 µM cerium ions, which is sufficient for XoxF expression in the wild type. Genotyping showed that both mutants harbored a loss-of-function mutation in the CQW49_RS02145 gene, which encodes a TonB-dependent receptor. Gene disruption and complementation experiments demonstrated that CQW49_RS02145 was required for XoxF1 expression in the presence of 25 µM cerium ions. Phylogenetic analysis indicated that CQW49_RS02145 was homologous to the Methylorubrum extorquens AM1 lanthanide transporter gene (lutH). These findings suggest that CQW49_RS02145 is involved in lanthanide uptake across the outer membrane. Furthermore, we demonstrated that supplementation with cerium and glycerol caused severe growth arrest in the wild type. CQW49_RS02145 underwent adaptive laboratory evolution in the presence of cerium and glycerol ions, resulting in a mutation that partially mitigated the growth arrest. This finding implies that loss-of-function mutations in CQW49_RS02145 can be attributed to residual glycerol from the frozen stock. IMPORTANCE Lanthanides are widely used in many industrial applications, including catalysts, magnets, and polishing. Recently, lanthanide-dependent metabolism was characterized in methane-utilizing bacteria. Despite the global demand for lanthanides, few studies have investigated the mechanism of lanthanide uptake by these bacteria. In this study, we identify a lanthanide transporter in Methylosinus trichosporium OB3b and indicate the potential interaction between intracellular lanthanide and glycerol. Understanding the genetic and environmental factors affecting lanthanide uptake should not only help improve the use of lanthanides for the bioconversion of methane into valuable products like methanol but also be of value for developing biomining to extract lanthanides under neutral conditions.


Asunto(s)
Oxidorreductasas de Alcohol , Elementos de la Serie de los Lantanoides , Methylosinus trichosporium , Oxidorreductasas de Alcohol/metabolismo , Cerio/metabolismo , Glicerol , Elementos de la Serie de los Lantanoides/metabolismo , Proteínas de Transporte de Membrana/genética , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Filogenia
8.
Appl Microbiol Biotechnol ; 106(23): 7879-7890, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36303083

RESUMEN

Methanotrophs are bacteria capable on growing on methane as their sole carbon source. They may provide a promising route for upgrading natural gas into more valuable fuels and chemicals. However, natural gas may contain significant quantities of hydrogen sulfide. Little is known about how hydrogen sulfide affects the growth and physiology of methanotrophs aside from a few studies showing that it is inhibitory. This study investigated how hydrogen sulfide affects the growth and physiology of the model methanotroph, Methylococcus capsulatus Bath. Growth studies demonstrated that hydrogen sulfide inhibits the growth of M. capsulatus Bath when the concentration exceeds 0.5% (v/v). To better understand how hydrogen sulfide is inhibiting the growth of M. capsulatus Bath, transcription and metabolite concentrations were profiled using RNA sequencing and gas chromatography-mass spectrometry, respectively. Our analysis of the differentially expressed genes and changes in metabolite concentrations suggests that hydrogen sulfide inhibits cellular respiration. The cells respond to sulfide stress in part by increasing the rate of sulfide oxidation and by increasing the expression of sulfide quinone reductase and a putative persulfide dioxygenase. In addition, they reduce the expression of the native calcium-dependent methanol dehydrogenase and increase the expression of XoxF, a lanthanide-dependent methanol dehydrogenase. While the reason of this switch in unknown, XoxF has previously been shown to be induced by lanthanides or nitric oxide in methanotrophs. Collectively, these results further our understanding of how methanotrophs respond to sulfide stress and may aid in the engineering of strains resistant to hydrogen sulfide. KEY POINTS: • Hydrogen sulfide inhibits growth of Methylococcus capsulatus Bath • Sulfide stress inhibits cellular respiration • Sulfide stress induces XoxF, a lanthanide-dependent methanol dehydrogenase.


Asunto(s)
Sulfuro de Hidrógeno , Elementos de la Serie de los Lantanoides , Methylococcus capsulatus , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Sulfuro de Hidrógeno/metabolismo , Gas Natural , Proteínas Bacterianas/metabolismo , Metano/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Análisis de Sistemas , Sulfuros/farmacología , Sulfuros/metabolismo , Oxigenasas/metabolismo
9.
Microorganisms ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144327

RESUMEN

Rhodococcus erythropolis N9T-4 is a super oligotroph that grows on an inorganic basal medium without any additional carbon and nitrogen sources and requires CO2 for its oligotrophic growth. Previously, we found that two genes, aldA and mnoA, encoding NAD-dependent aliphatic aldehyde dehydrogenase and N,N'-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase, respectively, were highly upregulated under oligotrophic conditions. In this study, we constructed reporter plasmids containing an enhanced green fluorescent protein gene under aldA or mnoA promoters (pAldA and pMnoA, respectively). Fluorescence analysis of N9T-4 cells with reporter plasmids revealed that tryptone and yeast extract strongly repressed the expression of oligotrophy-connected genes, whereas the effect of casamino acids was moderate. Furthermore, remarkably high expression of aldA and mnoA was observed when the reporter strains were grown in media containing primary alcohols, particularly ethanol. Malic acid repressed ethanol-induced gene expression, suggesting that C2 metabolism is involved in the oligotrophic growth of N9T-4. The regulation of oligotrophic gene expression elucidated in this study could provide appropriate conditions for the production of useful compounds in an oligotrophic microbial process.

10.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142248

RESUMEN

(Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6ß6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9-10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002-0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems.


Asunto(s)
Compuestos de Amonio , Methylobacterium extorquens , Oxidorreductasas de Alcohol/metabolismo , Iones , Metanol/metabolismo , Methylobacterium extorquens/genética
11.
Adv Microb Physiol ; 81: 1-24, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36167440

RESUMEN

Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Biología , Elementos de la Serie de los Lantanoides/metabolismo , Metales de Tierras Raras/metabolismo , Metanol/metabolismo , Cofactor PQQ
12.
Bioresour Technol ; 362: 127835, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36031125

RESUMEN

2-Propanol is a widely used industrial solvents. Herein, we employed a unique feature of type I methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z possessing only particulate methane monooxygenase (pMMO) for one-step direct production of pure 2-propanol from propane. By maintaining cell growth on glycerol, and after deletion of both Ca2+-dependent and La3+-dependent methanol dehydrogenases, propane was converted to 2-propanol by pMMO. Although most of the 2-propanol produced was further oxidized to acetone, deletion of active alcohol dehydrogenase, concomitant with synchronous overexpression of secondary alcohol dehydrogenase, significantly inhibited such undesirable oxidation. As a result, a remarkable enhancement (263 mg/L) of 2-propanol was achieved for 120 h by increasing cell growth with a supply of 50% (v/v) propane in headspace. This is the first demonstration to develop an engineered methanotrophic strain for the one-step direct production of pure 2-propanol from propane using one-phase cultivation without the supply of chemical inhibitors or additional reducing-power sources.


Asunto(s)
2-Propanol , Propano , Acetona , Alcohol Deshidrogenasa , Metano , Oxidación-Reducción
13.
Front Microbiol ; 13: 921636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814700

RESUMEN

Methylobacterium and Methylorubrum species oxidize methanol via pyrroloquinoline quinone-methanol dehydrogenases (MDHs). MDHs can be classified into two major groups, Ca2+-dependent MDH (MxaF) and lanthanide (Ln3+)-dependent MDH (XoxF), whose expression is regulated by the availability of Ln3+. A set of a siderophore, TonB-dependent receptor, and an ABC transporter that resembles the machinery for iron uptake is involved in the solubilization and transport of Ln3+. The transport of Ln3+ into the cytosol enhances XoxF expression. A unique protein named lanmodulin from Methylorubrum extorquens strain AM1 was identified as a specific Ln3+-binding protein, and its biological function was implicated to be an Ln3+ shuttle in the periplasm. In contrast, it remains unclear how Ln3+ levels in the cells are maintained, because Ln3+ is potentially deleterious to cellular systems due to its strong affinity to phosphate ions. In this study, we investigated the function of a lanmodulin homolog in Methylobacterium aquaticum strain 22A. The expression of a gene encoding lanmodulin (lanM) was induced in response to the presence of La3+. A recombinant LanM underwent conformational change upon La3+ binding. Phenotypic analyses on lanM deletion mutant and overexpressing strains showed that LanM is not necessary for the wild-type and XoxF-dependent mutant's methylotrophic growth. We found that lanM expression was regulated by MxcQE (a two-component regulator for MxaF) and TonB_Ln (a TonB-dependent receptor for Ln3+). The expression level of mxcQE was altered to be negatively dependent on Ln3+ concentration in ∆lanM, whereas it was constant in the wild type. Furthermore, when exposed to La3+, ∆lanM showed an aggregating phenotype, cell membrane impairment, La deposition in the periplasm evidenced by electron microscopy, differential expression of proteins involved in membrane integrity and phosphate starvation, and possibly lower La content in the membrane vesicle (MV) fractions. Taken together, we concluded that lanmodulin is involved in the complex regulation mechanism of MDHs and homeostasis of cellular Ln levels by facilitating transport and MV-mediated excretion.

14.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35409349

RESUMEN

One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.


Asunto(s)
Escherichia coli , Metanol , Acetaldehído , Escherichia coli/genética , Etanol , Formaldehído , Metanol/química
15.
Appl Environ Microbiol ; 88(2): e0075821, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788070

RESUMEN

The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and "Bathymodiolus" platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.


Asunto(s)
Methylococcaceae , Microbiota , Mytilidae , Animales , Metano/metabolismo , Methylococcaceae/genética , Methylococcaceae/metabolismo , Mytilidae/microbiología , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
16.
Front Microbiol ; 12: 740610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737731

RESUMEN

The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs.

17.
mBio ; 12(5): e0170821, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544276

RESUMEN

The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 µmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 µM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Metanol/metabolismo , Neodimio/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Ecosistema , Cinética , Elementos de la Serie de los Lantanoides , Metano , Neodimio/clasificación , Oxidación-Reducción , Filogenia , Verrucomicrobia
18.
Methods Enzymol ; 650: 19-55, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867022

RESUMEN

Historically, rare-earth ions have been considered irrelevant to biology. Recently, the active sites of certain methanol dehydrogenase (MDH) enzymes have been shown to contain a redox-inactive, rare-earth (RE) cation coordinated by the redox-active pyrroloquinoline quinone (PQQ) cofactor. Importantly, it was demonstrated that rare earths were essential for the growth of certain methylotrophs that incorporated the XoxF-MDH. In this chapter, we summarize the optimized synthesis of a previously published rare-earth complex that serves as a model of the active site of this RE-containing MDH enzyme. The structure and reactivity of the metalated complex, [La(LQQ)(NO3)3] are also discussed. [La(LQQ)(NO3)3] catalytically oxidizes the test alcohol substrate, p-methylbenzyl alcohol, 4MeBnOH, to p-methylbenzaldehyde, 4MePhCHO, in the presence of a base (2,6-lutidine) and a terminal oxidant (ferrocenium hexafluorophosphate) with ~17 turnovers. By studying this synthetic model, we have developed a body of evidence about both the reactivity and the mechanism of dehydrogenation of alcohols as a molecular analogue to a native, rare-earth dependent enzyme.


Asunto(s)
Oxidorreductasas de Alcohol , Metanol , Oxidorreductasas de Alcohol/metabolismo , Etanol , Oxidación-Reducción , Cofactor PQQ
19.
Methods Enzymol ; 650: 57-79, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867025

RESUMEN

The field of methanol dehydrogenases (MDHs) has experienced revival in the recent decade due to the observation of lanthanide-dependent MDH, in addition to widely known calcium-MDH. With the advent of lanthanide-dependent alcohol dehydrogenases, the need for reliable assays to evaluate and compare activities between different MDHs is obvious: from extremophilic to neutrophilic organisms, or with different lanthanide ions in the active site. Here we outline four assays that have been reported for Ln-MDH, discussing the advantages and disadvantages of the assays and their components. It should be noted, in 1990Day and Anthony produced a comprehensive summary in Methods in Enzymology on the available methods for Ca-MDH assays at the time (Day & Anthony, 1990). This chapter is an updated appraisal of the most important developments in the last 30years.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metanol , Alcohol Deshidrogenasa , Oxidorreductasas de Alcohol/genética , Proteínas Bacterianas
20.
Front Microbiol ; 12: 639266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828540

RESUMEN

Methanotrophs have been used to convert methane to methanol at ambient temperature and pressure. In order to accumulate methanol using methanotrophs, methanol dehydrogenase (MDH) must be downregulated as it consumes methanol. Here, we describe a methanol production system wherein MDH expression is controlled by using methanotroph mutants. We used the MxaF knockout mutant of Methylosinus trichosporium OB3b. It could only grow with MDH (XoxF) which has a cerium ion in its active site and is only expressed by bacteria in media containing cerium ions. In the presence of 0 µM copper ion and 25 µM cerium ion, the mutant grew normally. Under conditions conducive to methanol production (10 µM copper ion and 0 µM cerium ion), cell growth was inhibited and methanol accumulated (2.6 µmol·mg-1 dry cell weight·h-1). The conversion efficiency of the accumulated methanol to the total amount of methane added to the reaction system was ~0.3%. The aforementioned conditions were repeatedly alternated by modulating the metal ion composition of the bacterial growth medium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA