Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Microbiol ; 13: 928480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147852

RESUMEN

Sessile microorganisms are usually recalcitrant to antimicrobial treatments, and it is possible that finding biofilm-related effectors in metatranscriptomics datasets helps to understand mechanisms for bacterial persistence in diverse environments, by revealing protein-encoding genes that are expressed in situ. For this research, selected dairy-associated metatranscriptomics bioprojects were downloaded from the public databases JGI GOLD and NCBI (eight milk and 45 cheese samples), to screen for sequences encoding biofilm-related effectors. Based on the literature, the selected genetic determinants were related to adhesins, BAP, flagellum-related, intraspecific QS (AHL, HK, and RR), interspecific QS (LuxS), and QQ (AHL-acylases, AHL-lactonases). To search for the mRNA sequences encoding for those effector proteins, a custom database was built from UniprotKB, yielding 1,154,446 de-replicated sequences that were indexed in DIAMOND for alignment. The results revealed that in all the dairy-associated metatranscriptomic datasets obtained, there were reads assigned to genes involved with flagella, adhesion, and QS/QQ, but BAP-reads were found only for milk. Significant Pearson correlations (p < 0.05) were observed for transcripts encoding for flagella, RR, histidine kinases, adhesins, and LuxS, although no other significant correlations were found. In conclusion, the rationale used in this study was useful to demonstrate the presence of biofilm-associated effectors in metatranscriptomics datasets, pointing out to possible regulatory mechanisms in action in dairy-related biofilms, which could be targeted in the future to improve food safety.

2.
Caries Res ; 55(6): 603-616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34380135

RESUMEN

The oral microbiome is unique at inter and intra-individual levels at various sites due to physical and biological factors. This study aimed to compare the bacterial composition of supragingival biofilms collected from enamel sites with different caries activity, from active and inactive-caries subjects, and from caries-free (CF) subjects. Twenty-two individuals (aged between 13 and 76 years old; med = 23.5 years old) were allocated into 3 groups: caries-active (CA) (n = 10), caries-inactive (CI) (n = 6), and CF (n = 6). From the CA group, 3 sites were sampled: CA (active non-cavitated lesion), CI (inactive non-cavitated lesion), and sound enamel surface (S). From the subjects of the CI group, biofilm from a CI lesion was collected (INCL), while for the CF subjects, a pool of biofilm from sound enamel surfaces was sampled. The total RNA was extracted, and cDNA libraries were prepared and paired-end sequenced (Illumina HiSeq 3,000). Final dental biofilm samples analysed from CA was 16 (ANCL-CA = 6, INCL-CA = 4, S-CA = 6); from CI, 3 (INCL-CI = 3); and from CF, 6 (S-CF = 6) (some samples were lost by insufficient genetic material). Read sequences were processed and analysed using the Metagenomics RAST server. High-quality sequences (3,542,190) were clustered into operational taxonomic units (97% identity; SILVA SSU), representing 915 genera belonging to 29 phyla (higher abundant: Actinobacteria, Firmicutes, Bacteroidetes, and Fusobacteria). The presence of a core microbiome was observed (123 shared genera). The alpha diversity analysis showed less bacterial diversity in disease (S-CA) compared to health (S-CF). The dominant genera included Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, Veillonella, Prevotella, Streptococcus, Eubacterium, and Neisseria. Veillonella and Leptotrichia were related with disease and Prevotella with health. Corynebacterium, Capnocytophaga, and Actinomyces clustered together presenting high abundance in health and disease. The Metric Multidimensional Scaling Ordination analysis shows that sites from active subjects (ANCL-CA, INCL-CA, and S-CA) are closer to each other than either INCL-CI subjects or S-CF subjects. In conclusion, supragingival bacterial communities presented intra-individual similarities, but inter-individual diversity and difference in bacterial composition reveal that the subject's caries activity status matters more than sites.


Asunto(s)
Caries Dental , Microbiota , Adolescente , Adulto , Anciano , Biopelículas , Susceptibilidad a Caries Dentarias , Humanos , Persona de Mediana Edad , ARN Ribosómico 16S , Adulto Joven
3.
Microb Ecol ; 81(3): 795-806, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33000311

RESUMEN

Infectious diseases are one of the major drivers of coral reef decline worldwide. White plague-like disease (WPL) is a widespread disease with a complex etiology that infects several coral species, including the Brazilian endemic species Mussismilia braziliensis. Gene expression profiles of healthy and WPL-affected M. braziliensis were analyzed in winter and summer seasons. The de novo assembly of the M. braziliensis transcriptome from healthy and white plague samples produced a reference transcriptome containing 119,088 transcripts. WPL-diseased samples were characterized by repression of immune system and cellular defense processes. Autophagy and cellular adhesion transcripts were also repressed in WPL samples, suggesting exhaustion of the coral host defenses. Seasonal variation leads to plasticity in transcription with upregulation of intracellular signal transduction, apoptosis regulation, and oocyte development in the summer. Analysis of the active bacterial rRNA indicated that Pantoea bacteria were more abundant in WPL corals, while Tistlia, Fulvivirga, and Gammaproteobacteria Ga0077536 were more abundant in healthy samples. Cyanobacteria proliferation was also observed in WPL, mostly in the winter. These results indicate a scenario of dysbiosis in WPL-affected M. braziliensis, with the loss of potentially symbiotic bacteria and proliferation of opportunistic microbes after the start of the infection process.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Disbiosis , Sistema Inmunológico , Simbiosis
4.
Toxins (Basel) ; 12(6)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466531

RESUMEN

Prokaryotes represent a source of both biotechnological and pharmaceutical molecules of importance, such as nonribosomal peptides (NRPs). NRPs are secondary metabolites which their synthesis is independent of ribosomes. Traditionally, obtaining NRPs had focused on organisms from terrestrial environments, but in recent years marine and coastal environments have emerged as an important source for the search and obtaining of nonribosomal compounds. In this study, we carried out a metataxonomic analysis of sediment of the coast of Yucatan in order to evaluate the potential of the microbial communities to contain bacteria involved in the synthesis of NRPs in two sites: one contaminated and the other conserved. As well as a metatranscriptomic analysis to discover nonribosomal peptide synthetases (NRPSs) genes. We found that the phyla with the highest representation of NRPs producing organisms were the Proteobacteria and Firmicutes present in the sediments of the conserved site. Similarly, the metatranscriptomic analysis showed that 52% of the sequences identified as catalytic domains of NRPSs were found in the conserved site sample, mostly (82%) belonging to Proteobacteria and Firmicutes; while the representation of Actinobacteria traditionally described as the major producers of secondary metabolites was low. It is important to highlight the prediction of metabolic pathways for siderophores production, as well as the identification of NRPS's condensation domain in organisms of the Archaea domain. Because this opens the possibility to the search for new nonribosomal structures in these organisms. This is the first mining study using high throughput sequencing technologies conducted in the sediments of the Yucatan coast to search for bacteria producing NRPs, and genes that encode NRPSs enzymes.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Sedimentos Geológicos/microbiología , Microbiota , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Péptido Sintasas/genética , Transcriptoma , Bacterias/clasificación , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Péptido Sintasas/metabolismo , Filogenia , Humedales
5.
mSystems ; 4(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30834326

RESUMEN

Gulf of Mexico sediments harbor numerous hydrocarbon seeps associated with high sedimentation rates and thermal maturation of organic matter. These ecosystems host abundant and diverse microbial communities that directly or indirectly metabolize components of the emitted fluid. To investigate microbial function and activities in these ecosystems, metabolic potential (metagenomic) and gene expression (metatranscriptomic) analyses of two cold seep areas of the Gulf of Mexico were carried out. Seeps emitting biogenic methane harbored microbial communities dominated by archaeal anaerobic methane oxidizers of phylogenetic group 1 (ANME-1), whereas seeps producing fluids containing a complex mixture of thermogenic hydrocarbons were dominated by ANME-2 lineages. Metatranscriptome measurements in both communities indicated high levels of expression of genes for methane metabolism despite their distinct microbial communities and hydrocarbon composition. In contrast, the transcription level of sulfur cycle genes was quite different. In the thermogenic seep community, high levels of transcripts indicative of syntrophic anaerobic oxidation of methane (AOM) coupled to sulfate reduction were detected. This syntrophic partnership between the dominant ANME-2 and sulfate reducers potentially involves direct electron transfer through multiheme cytochromes. In the biogenic methane seep, genes from an ANME-1 lineage that are potentially involved in polysulfide reduction were highly expressed, suggesting a novel bacterium-independent anaerobic methane oxidation pathway coupled to polysulfide reduction. The observed divergence in AOM activities provides a new model for bacterium-independent AOM and emphasizes the variation that exists in AOM pathways between different ANME lineages. IMPORTANCE Cold seep sediments are complex and widespread marine ecosystems emitting large amounts of methane, a potent greenhouse gas, and other hydrocarbons. Within these sediments, microbial communities play crucial roles in production and degradation of hydrocarbons, modulating oil and gas emissions to seawater. Despite this ecological importance, our understanding of microbial functions and methane oxidation pathways in cold seep ecosystems is poor. Based on gene expression profiling of environmental seep sediment samples, the present work showed that (i) the composition of the emitted fluids shapes the microbial community in general and the anaerobic methanotroph community specifically and (ii) AOM by ANME-2 in this seep may be coupled to sulfate reduction by Deltaproteobacteria by electron transfer through multiheme cytochromes, whereas AOM by ANME-1 lineages in this seep may involve a different, bacterium-independent pathway, coupling methane oxidation to elemental sulfur/polysulfide reduction.

6.
Electron. j. biotechnol ; Electron. j. biotechnol;29: 13-21, sept. 2017. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1017057

RESUMEN

Background: The past years have witnessed a growing number of researches in biofilm forming communities due to their environmental and maritime industrial implications. To gain a better understanding of the early bacterial biofilm community, microfiber nets were used as artificial substrates and incubated for a period of 24 h in Mauritian coastal waters. Next-generation sequencing technologies were employed as a tool for identification of early bacterial communities. Different genes associated with quorum sensing and cell motility were further investigated. Results: Proteobacteria were identified as the predominant bacterial microorganisms in the biofilm within the 24 h incubation, of which members affiliated to Gammaproteobacteria, Alphaproteobacteria and Betaproteobacteria were among the most abundant classes. The biofilm community patterns were also driven by phyla such as Firmicutes, Bacteroidetes, Chloroflexi, Actinobacteria and Verrucomicrobia. The functional analysis based on KEGG classification indicated high activities in carbohydrate, lipid and amino acids metabolism. Different genes encoding for luxI, lasI, agrC, flhA, cheA and cheB showed the involvement of microbial members in quorum sensing and cell motility. Conclusion: This study provides both an insight on the early bacterial biofilm forming community and the genes involved in quorum sensing and bacterial cell motility.


Asunto(s)
Agua de Mar/microbiología , Bacterias/crecimiento & desarrollo , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Adhesión Bacteriana , Movimiento Celular , Biopelículas , Biodiversidad , Percepción de Quorum , Incrustaciones Biológicas , Metagenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Mauricio
7.
Mol Immunol ; 71: 192-202, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26919728

RESUMEN

The bovine viral diarrhea virus (BVDV) is responsible for significant economic losses in the dairy and cattle industry; however, little is known about the protective and pathological responses of hosts to infection. The present study determined the principal molecular markers implicated in viral infection through meta-transcriptomic analysis using MDBK cells infected for two hours with a field isolate of BVDV-1. While several immune regulator genes were induced, genes involved in cell signaling, metabolic processes, development, and integrity were down-regulated, suggesting an isolation of infected cells from cell-to-cell interactions and responses to external signals. Analysis through RT-qPCR confirmed the expression of more than one hundred markers. Interestingly, there was a significant up-regulation of two negative NF-κB regulators, IER3 and TNFAIP3, indicating a possible blocking of this signaling pathway mediated by BVDV-1 infection. Additionally, several genes involved in the metabolism of reactive oxygen species were down-regulated, suggesting increased oxidative stress. Notably, a number of genes involved in cellular growth and development were also regulated during infection, including MTHFD1L, TGIF1, and Brachyury. Moreover, there was an increased expression of the genes ß-catenin, caprin-2, GSK3ß, and MMP-7, all of which are crucial to the Wnt signaling pathway that is implicated in the embryonic development of a variety of organisms. This meta-transcriptomic analysis provides the first data towards understanding the infection mechanisms of cytopathic BVDV-1 and the putative molecular relationship between viral and host components.


Asunto(s)
Diarrea Mucosa Bovina Viral/genética , Diarrea Mucosa Bovina Viral/inmunología , Transcriptoma , Animales , Bovinos , Línea Celular , Virus de la Diarrea Viral Bovina Tipo 1 , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA