Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt C): 291-297, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39298980

RESUMEN

Transition metal sulfides have emerged as compelling anode materials for sodium-ion batteries (SIBs), leveraging their abundant elemental reserves and high theoretical capacities. However, the reaction of sulfur with Na ions is usually accompanied by significant volume dilation, which hinders their further development and application. Hence, constructing bimetallic sulfide (FeSn)/S for SIBs anode material greatly alleviates the circulation attenuation caused by volume expansion. Through constructing bimetallic heterojunction materials from nanocube precursors, the (FeSn)/S anode material retains a high specific capacity of 578 mAh/g at an intense current density of 2 A/g after 1000 cycles, and exhibits an great rate capability, delivering 796 mAh/g at 100 mA/g. The excellent electrochemical performance of the heterojunction material presents a promising solution to the enduring quest for enhanced anode material for SIBs.

2.
Talanta ; 280: 126669, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153254

RESUMEN

In this work, a photoelectrochemical (PEC) immunosensor was constructed for the ultrasensitive detection of lung cancer marker neuron-specific enolase (NSE) based on a microflower-like heterojunction of cadmium indium sulfide and magnesium indium sulfide (CdIn2S4/MgIn2S4, CMIS) as photoactive material. Specifically, the well-matched energy level structure and narrow energy level gradients between CdIn2S4 and MgIn2S4 could accelerate the separation of electron-hole (e--h+) pairs in the CMIS heterojunction to enhance the photocurrent of CMIS, which was increased 5.5 and 80 times compared with that of single CdIn2S4 and MgIn2S4, respectively. Meanwhile, using CMIS as photoactive material, increasing the biocompatibility by dropping Pt NPs on the surface of CMIS to immobilize the antibody through Pt-N bond. Fe3O4-Ab2, acting as the quencher, competitively consumes electron donors and absorbs light, leading to photocurrent quenching. With the increasing of quencher, the photocurrent decreased. Hence, the developed "signal-off" PEC immunosensor realized the trace detection of NSE within the range from 1.0 fg/mL to 10 ng/mL with a low detection limit of 0.34 fg/mL. This strategy provided a new perspective for establishing ternary metal sulfide heterojunction to construct PEC immunosensor for sensitive detection of disease biomarkers.


Asunto(s)
Biomarcadores de Tumor , Indio , Neoplasias Pulmonares , Fosfopiruvato Hidratasa , Sulfuros , Humanos , Fosfopiruvato Hidratasa/análisis , Indio/química , Biomarcadores de Tumor/análisis , Sulfuros/química , Límite de Detección , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Compuestos de Cadmio/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
3.
J Colloid Interface Sci ; 677(Pt A): 425-434, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096710

RESUMEN

In this study, a simple one-pot synthesis process is employed to introduce Pd dopant and abundant S vacancies into In2S3 nanosheets. The optimized Pd-doped In2S3 photocatalyst, with abundant S vacancies, demonstrates a significant enhancement in photocatalytic hydrogen evolution. The joint modification of Pd doping and rich S vacancies on the band structure of In2S3 result in an improvement in both the light absorption capacity and proton reduction ability. It is worth noting that photogenerated electrons enriched by S vacancies can rapidly migrate to adjacent Pd atoms through an efficient transfer path constructed by Pd-S bond, effectively suppressing the charge recombination. Consequently, the dual-defective In2S3 shows an efficient photocatalytic H2 production rate of 58.4 ± 2.0 µmol·h-1. Additionally, further work has been conducted on other ternary metal sulfide, ZnIn2S4. Our findings provide a new insight into the development of highly efficient photocatalysts through synergistic defect engineering.

4.
ACS Appl Mater Interfaces ; 16(32): 42189-42197, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093830

RESUMEN

Pure sulfur (S8 and Li2S) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm-2 attaining areal capacities of ∼4 mAh cm-2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm-2 achieving cathode areal capacities above 6 mAh cm-2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:Li2S cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.

5.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125039

RESUMEN

To explore advanced oxidation catalysts, peroxymonosulfate (PMS) activation by Co-Ni-Mo/carbon nanotube (CNT) composite catalysts was investigated. A compound of NiCo2S4, MoS2, and CNTs was successfully prepared using a simple one-pot hydrothermal method. The results revealed that the activation of PMS by Co-Ni-Mo/CNT yielded an exceptional Rhodamine B decolorization efficiency of 99% within 20 min for the Rhodamine B solution. The degradation rate of Co-Ni-Mo/CNT was 4.5 times higher than that of Ni-Mo/CNT or Co-Mo/CNT, and 1.9 times as much than that of Co-Ni/CNT. Additionally, radical quenching experiments revealed that the principal active groups were 1O2, surface-bound SO4•-, and •OH radicals. Furthermore, the catalyst exhibited low metal ion leaching and favorable stability. Mechanism studies revealed that Mo4+ on the surface of MoS2 participated in the oxidation of PMS and the transformation of Co3+/Co2+ and Ni3+/Ni2+. The synergism between MoS2 and NiCo2S4 reduces the charge transfer resistance between the catalyst and solution interface, thus accelerating the reaction rate. Interconnected structures composed of metal sulfides and CNTs can also enhance the electron transfer process and afford sufficient active reaction sites. Our work provides a further understanding of the design of multi-metal sulfides for wastewater treatment.

6.
J Colloid Interface Sci ; 675: 104-116, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38968631

RESUMEN

Exploring precious metal-free bifunctional electrocatalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is essential for the practical application of rechargeable Zn-air battery (ZAB). Herein, Ni-doped Co9S8 nanoparticles embedded in a defect-rich N, S co-doped carbon matrix (d-NixCo9-xS8@NSC) are synthesized via a facile pyrolysis and acid treatment process. The introduction of abundant defects in both the carbon matrix and metal sulfide provides numerous active sites and significantly enhances the electrocatalytic performances for both the ORR and OER. d-NixCo9-xS8@NSC exhibits a superior half-wave potential of 0.841 V vs. RHE for the ORR and delivers a low overpotential of 0.329 V at 10 mA cm-2 for the OER. Additionally, Zn-air secondary battery using d-NixCo9-xS8@NSC as the air cathode displays a higher specific capacity of 734 mAh gZn-1 and a peak power density of 148.03 mW cm-2 compared to those of state-of-the-art Pt/C-RuO2 (673 mAh gZn-1 and 136.9 mW cm-2, respectively). These findings underscore the potential of d-NixCo9-xS8@NSC as a high-performance electrocatalyst for secondary ZABs, offering new perspectives on the design of efficient noble metal-free electrocatalysts for future energy storage and conversion applications.

7.
J Colloid Interface Sci ; 677(Pt A): 140-149, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39083891

RESUMEN

Multinary metal sulfides (MMSs) are highly suitable candidates for the application of electrocatalysis as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, a stable nanoarchitecture consisting of MMSs ((NiCoCrMnFe)Sx) nanoparticles embedded in S, N-codoped carbon (SNC) layers derived from metal organic framework (MOF) and supported on carbonized wood fibers (CWF) was fabricated by directly carbonization. Benefiting from this carbon-coated configuration, along with the synergistic effects within multinary metal systems, (NiCoCrMnFe)Sx@SNC/CWF delivers an exceptionally low overpotential of 260 mV at a high current density of 1000 mA cm-2, a small Tafel slope of 48.5 mV dec-1, and robust electrocatalytic stability. Furthermore, the (NiCoCrMnFe)Sx@SNC/CWF used as the cathode of rechargeable Zn-air batteries demonstrates higher power density and remarkable durability, surpassing that of commercial RuO2. Thus, we showcase the feasibility and advantages of employing highly efficient and durable MMSs materials for low-cost and sustainable energy conversion.

8.
J Colloid Interface Sci ; 674: 913-924, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959737

RESUMEN

Rational design and preparation of a multiphase electrocatalyst for hydrogen evolution reaction (HER) has become a hot research topic, while applicable and pH versatility of vanadium tetrasulfide (VS4) and heptairon octasulfide (Fe7S8) composites have rarely been reported. Here, the facile topological sulfide self-template sacrifice method using FeV bimetallic MOFs is designed to obtain Fe7S8 coupled with VS4 heterostructures, enhancing the electron precipitation in the catalysts and attracts electrons to migrate. According to DFT simulations, the electronic coupling at the atomic orbital level and the modulation of interfacial electrons among various interfaces play a crucial role in enhancing the intermediate state process of the hydrogen evolution reaction (HER) across the entire pH range, promoting the optimal d-band centroid value (εd). Reassuringly, the prepared 3D Fe7S8/VS4 electrodes possessed excellent performances of η10 = 53 mV, η10 = 135 mV and η10 = 38 mV in a conventional three-electrode configuration in a 1 M KOH, 1 M Na2SO4, and 0.5 M H2SO4, and the stabilized currents can all be maintained for 48 h. This innovative design of in situ heterostructured materials constructed from dual transition metal sulfides provides inspiring ideas for the preparation of all-pH catalysts.

9.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39064360

RESUMEN

Transition metal sulfides are widely used in supercapacitor electrode materials and exhibit excellent performance because of their rich variety, low price, and high theoretical specific capacity. At present, the main methods to prepare transition metal sulfides include the hydrothermal method and the electrochemical method. In order to further improve their electrochemical performance, two aspects can be addressed. Firstly, by controllable synthesis of nanomaterials, porous structures and large surface areas can be achieved, thereby improving ion transport efficiency. Secondly, by combining transition metal sulfides with other energy storage materials, such as carbon materials and metal oxides, the synergy between different materials can be fully utilized. However, future research still needs to address some challenges. In order to guide further in-depth research, it is necessary to combine the current research-derived knowledge and propose a direction for future development of transition metal sulfide electrode materials.

10.
ACS Appl Mater Interfaces ; 16(28): 36333-36342, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950183

RESUMEN

The photocatalytic conversion of solar energy to hydrogen is a promising pathway toward clean fuel production, yet it requires advancement to meet industrial-scale demands. This study demonstrates that the interface engineering of heterojunctions is a viable strategy to enhance the photocatalytic performance of CuInS2/Mo2S3. Specifically, CuInS2 nanoparticles are incorporated into Mo2S3 nanospheres via a wet impregnation technique to form an S-scheme heterojunction. This configuration facilitates directional electron transfer, optimizing electron utilization and fostering efficient photocatalytic processes. The presence of an S-scheme heterojunction in CuInS2/Mo2S3 is corroborated by in situ irradiation X-ray photoelectron spectroscopy and density functional theory analyses, which confirm the directional movement of electrons at the interface of heterojunction. Comprehensive characterization of the heterojunction photocatalyst, including phase, structural, and photoelectric property assessments, reveals a significant specific surface area and light absorption capability. These attributes augment the number of active sites available in CuInS2/Mo2S3 for proton reduction reactions. This study offers a pragmatic approach for designing metal sulfide-based photocatalysts via strategic interface engineering, potentially advancing the field toward sustainable hydrogen production.

11.
Adv Mater ; 36(33): e2403521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879752

RESUMEN

Sodium-ion batteries (SIBs) are entering commercial relevance as a sustainable and low-cost alternative to lithium-ion batteries. Improving the energy density of SIBs is critical to enable their widespread adoption. Here, a new class of cathode materials Na6MS4 (M = Co, Mn, Fe, and Zn) that exhibit high charge-storage capacity is reported. Using Na6CoS4 as a prototypical example, a six-electron conversion reaction dominated by anion redox is observed, confirmed through various electrochemical and spectroscopic techniques. After the initial cycle, Na6CoS4 delivers a high capacity of 392 mA h g-1 with a long lifespan of over 500 cycles. The reaction involves, initially, the transformation of crystalline Na6CoS4 to a nearly amorphous structure consisting of mainly CoS and sulfur nanoparticles, which then reversibly cycles between nearly amorphous a-CoS/S and a-Na6CoS4. Such anion-redox-driven conversion-type cathodes hold the potential to enable energy-dense, stable SIBs.

12.
J Colloid Interface Sci ; 673: 228-238, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38875789

RESUMEN

Designing cost-effective electrocatalysts for water decomposition is crucial for achieving environmental-friendly hydrogen production. A transition metal sulfide/hydroxide electrocatalyst (1T-MoS2/Ni3S2/LDH) with double heterogeneous interfaces was developed through a two-step hydrothermal assisted electrodeposition method. The presence of the two built-in electric fields not only accelerated the charge transfer at the interface, but also enhanced the adsorption of the reactants and intermediate groups, and therefore improved the reaction rate and overall catalytic performance. The results suggest that the 1T-MoS2/Ni3S2/LDH catalysts display exceptional electrocatalytic reactivity. Under alkaline conditions, the overpotential of the electrocatalyst was 187 (η50) mV for OER and 104 (η10) mV for HER. Furthermore, the two-electrode system assembled by the electrocatalyst needs only a voltage of 1.55 V to deliver a current density of 10 mA cm-2. Our result provides a simple and effective methodical approach to the design of dual heterogeneous interfacial electrocatalysts.

13.
Natl Sci Rev ; 11(7): nwae190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38938275

RESUMEN

Heterogeneous catalysis promises to accelerate sulfur-involved conversion reactions in lithium-sulfur batteries. Solid-state Li2S dissociation remains as the rate-limiting step because of the weakly matched solid-solid electrocatalysis interfaces. We propose an electrochemically molecular-imprinting strategy to have a metal sulfide (MS) catalyst with imprinted defects in positions from which the pre-implanted Li2S has been electrochemically removed. Such tailor-made defects enable the catalyst to bind exclusively to Li atoms in Li2S reactant and elongate the Li-S bond, thus decreasing the reaction energy barrier during charging. The imprinted Ni3S2 catalyst shows the best activity due to the highest defect concentration among the MS catalysts examined. The Li2S oxidation potential is substantially reduced to 2.34 V from 2.96 V for the counterpart free of imprinted vacancies, and an Ah-level pouch cell is realized with excellent cycling performance. With a lean electrolyte/sulfur ratio of 1.80 µL mgS -1, the cell achieves a benchmarkedly high energy density beyond 500 Wh kg-1.

14.
Chemosphere ; 361: 142556, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851499

RESUMEN

In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.


Asunto(s)
Oxidación-Reducción , Peróxidos , Tungsteno , Peróxidos/química , Tungsteno/química , Catálisis , Ácidos Carboxílicos/química , Contaminantes Químicos del Agua/química , Sulfuros/química , Compuestos Férricos/química , Aguas Residuales/química , Petróleo , Hierro/química , Especies Reactivas de Oxígeno/química
15.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709246

RESUMEN

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Asunto(s)
Inmunoterapia , Proteínas de la Membrana , Piroptosis , Microambiente Tumoral , Neoplasias del Cuello Uterino , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/terapia , Femenino , Humanos , Ratones , Animales , Piroptosis/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Manganeso/química , Manganeso/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Calcio/metabolismo , Ratones Endogámicos BALB C , Ensayos de Selección de Medicamentos Antitumorales
16.
J Colloid Interface Sci ; 669: 265-274, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718580

RESUMEN

HYPOTHESIS: Metal-organic frameworks (MOFs) are highly suitable precursors for supercapacitor electrode materials owing to their high porosity and stable backbone structures that offer several advantages for redox reactions and rapid ion transport. EXPERIMENTS: In this study, a carbon-coated Ni9S8 composite (Ni9S8@C-5) was prepared via sulfuration at 500 ℃ using a spherical Ni-MOF as the sacrificial template. FINDING: The stable carbon skeleton derived from Ni-MOF and positive structure-activity relationship due to the multinuclear Ni9S8 components resulted in a specific capacity of 278.06 mAh·g-1 at 1 A·g-1. Additionally, the hybrid supercapacitor (HSC) constructed using Ni9S8@C-5 as the positive electrode and the laboratory-prepared coal pitch-based activated carbon (CTP-AC) as the negative electrode achieved an energy density of 69.32 Wh·kg-1 at a power density of 800.06 W·kg-1, and capacity retention of 83.06 % after 5000 cycles of charging and discharging at 5 A·g-1. The Ni-MOF sacrificial template method proposed in this study effectively addresses the challenges associated with structural collapse and agglomeration of Ni9S8 during electrochemical reactions, thus improving its electrochemical performance. Hence, a simple preparation method is demonstrated, with broad application prospects in supercapacitor electrodes.

17.
Ultrason Sonochem ; 106: 106903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754141

RESUMEN

Ternary metal sulfide (MIn2S4) by virtue of large extinction coefficient, suitable band gap and stability, has been proposed as a candidate for photocatalytic synthesis hydrogen peroxide (H2O2). However, MIn2S4 is conventionally synthesized by solvothermal method that is generally characterized by tedious operational steps and long reaction time. In this work, four sonoMIn2S4 (M = Zn, Mg, Ni, Co) were successfully prepared by sonochemical method within 2 h. These as-synthesized sonoMIn2S4 delivered much high-efficient photocatalytic H2O2 generation. Particularly, the sonoZnIn2S4 presented H2O2 production rate of 21295.5 µmol∙g-1∙h-1 in water/benzylalcohol system, which is 3.0 times that of ZnIn2S4 prepared by solvothermal method. The remarkably improved photocatalytic performance of sonoZnIn2S4 might be due to the multiple defects and fast electron-hole pair separation caused by ultrasound cavitation effect. Other metal sulfide photocatalysts with high performance were efficiently fabricated by facile sonochemical technology as well. The sonochemical method realized the rapid preparation of metal sulfide photocatalysts and efficient production of H2O2, which benefits to meet the United Nations Sustainable Development Goals (SDGs) including SDG-7 and SDG-12.

18.
Angew Chem Int Ed Engl ; 63(27): e202403463, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38661020

RESUMEN

Metal sulfide (MS) is regarded as a promising candidate of the anode materials for sodium-ion battery (SIB) with ideal capacity and low cost, yet still suffers from the inferior cycling stability and voltage degradation. Herein, the coordination relationship between the discharge product Na2S with the Na+ (NaPF6) in the electrolyte, is revealed as the root cause for the cycling failure of MS. Na+-coordination effect assistants the dissolution of Na2S, further delocalizing Na2S from the reaction interface under the function of electric field, which leads to the solo oxidation of the discharge product element metal without the participation of Na2S. Besides, the higher highest occupied molecular orbital of Na2S suggest the facilitated Na2S solo oxidation to produce sodium polysulfides (NaPSs). Based on these, lowering the Na+ concentration of the electrolyte is proposed as a potential improvement strategy to change the coordination environment of Na2S, suppressing the side reactions of the solo-oxidation of element metal and Na2S. Consequently, the enhanced conversion reaction reversibility and prolonged cycle life are achieved. This work renders in-depth perception of failure mechanism and inspiration for realizing advanced conversion-type anode.

19.
Angew Chem Int Ed Engl ; 63(27): e202402497, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679571

RESUMEN

The large size of K-ion makes the pursuit of stable high-capacity anodes for K-ion batteries (KIBs) a formidable challenge, particularly for high temperature KIBs as the electrode instability becomes more aggravated with temperature climbing. Herein, we demonstrate that a hollow ZnS@C nanocomposite (h-ZnS@C) with a precise shell modulation can resist electrode disintegration to enable stable high-capacity potassium storage at room and high temperature. Based on a model electrode, we identify an interesting structure-function correlation of the h-ZnS@C: with an increase in the shell thickness, the cyclability increases while the rate and capacity decrease, shedding light on the design of high-performance h-ZnS@C anodes via engineering the shell thickness. Typically, the h-ZnS@C anode with a shell thickness of 60 nm can deliver an impressive comprehensive performance at room temperature; the h-ZnS@C with shell thickness increasing to 75 nm can achieve an extraordinary stability (88.6 % capacity retention over 450 cycles) with a high capacity (450 mAh g-1) and a superb rate even at an extreme temperature of 60 °C, which is much superior than those reported anodes. This contribution envisions new perspectives on rational design of functional metal sulfides composite toward high-performance KIBs with insights into the significant structure-function correlation.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38602007

RESUMEN

All-solid-state batteries have attracted attention because of their high energy density, safety, and long cycle life. Sulfide active materials exhibit high capacities and enable an enhanced energy density in all-solid-state batteries. In this study, we synthesized electrode-electrolyte bifunctional materials in the system Li2S-V2S3-LiX (X = F, Cl, Br, or I) through a mechanochemical process. In addition, the effects of the addition of lithium halides on the electrochemical properties were investigated. All-solid-state batteries with the Li2S-V2S3-LiI electrode showed the highest capacity of 400 mAh g-1 among all the cells, even though their electronic and ionic conductivities were the same. From the point of view of the ionic conductivity and structure of the electrodes during cycling, it was clarified that a high reversible capacity was achieved not only by high ionic and electronic conductivities before cycling but also by maintaining the ionic conductivity even at the deep state of charge. Furthermore, high-loading all-solid-state cells were fabricated using the Li2S-V2S3-LiI materials with a mass loading of 37.3 mg cm-2, exhibiting a high areal capacity of approximately 11.5 mAh cm-2 at 60 °C and good cycle performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA