Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Pharmacol Rep ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289333

RESUMEN

Injury to the developing central nervous system resulting from perinatal hypoxia-ischemia (HI) is still a clinical challenge. The only approach currently available in clinical practice for severe cases of HI is therapeutic hypothermia, initiated shortly after birth and supported by medications to regulate blood pressure, control epileptic seizures, and dialysis to support kidney function. However, these treatments are not effective enough to significantly improve infant survival or prevent brain damage. The need to create a new effective therapy has focused attention on metabotropic glutamate receptors (mGluR), which control signaling pathways involved in HI-induced neurodegeneration. The complexity of mGluR actions, considering their localization and developmental changes, and the functions of each subtype in HI-evoked brain damage, combined with difficulties in the availability of safe and effective modulators, raises the question whether modulation of mGluRs with subtype-selective ligands can become a new treatment in neonatal HI. Addressing this question, this review presents the available information concerning the role of each of the eight receptor subtypes of the three mGluR groups (group I, II, and III). Data obtained from experiments performed on in vitro and in vivo neonatal HI models show the neuroprotective potential of group I mGluR antagonists, as well as group II and III agonists. The information collected in this work indicates that the neuroprotective effects of manipulating mGluR in experimental HI models, despite the need to create more safe and selective ligands for particular receptors, provide a chance to create new therapies for the sensitive brains of infants at risk.

2.
Pharmacol Ther ; : 108724, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299577

RESUMEN

Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic ß-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.

3.
Neurochem Int ; 179: 105840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181245

RESUMEN

Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist ß-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than ß-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1ß in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1ß, these effects were reversed by EGLU instead of ß-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1ß in normal rats, while intrarubral injection of EGLU rather than ß-NAAG significantly boosted the expressions of TNF-α and IL-1ß. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1ß. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.


Asunto(s)
Interleucina-1beta , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico , Núcleo Rojo , Factor de Necrosis Tumoral alfa , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/biosíntesis , Masculino , Interleucina-1beta/metabolismo , Interleucina-1beta/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Ratas , Núcleo Rojo/metabolismo , Núcleo Rojo/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Aminoácidos
4.
eNeuro ; 11(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969501

RESUMEN

Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 d followed by 7 d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico , Reconocimiento en Psicología , Animales , Metanfetamina/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Masculino , Estimulantes del Sistema Nervioso Central/farmacología , Trastornos de la Memoria/metabolismo , Ratones , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo
5.
Br J Pharmacol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030902

RESUMEN

BACKGROUND AND PURPOSE: Metabotropic glutamate receptor 1 (mGlu1) is a promising therapeutic target for neurodegenerative CNS disorders including spinocerebellar ataxias (SCAs). Clinical reports have identified naturally-occurring mGlu1 mutations in rare SCA subtypes and linked symptoms to mGlu1 mutations. However, how mutations alter mGlu1 function remains unknown, as does amenability of receptor function to pharmacological rescue. Here, we explored SCA-associated mutation effects on mGlu1 cell surface expression, canonical signal transduction and allosteric ligand pharmacology. EXPERIMENTAL APPROACH: Orthosteric agonists, positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) were assessed at two functional endpoints (iCa2+ mobilisation and inositol 1-phosphate [IP1] accumulation) in FlpIn Trex HEK293A cell lines expressing five mutant mGlu1 subtypes. Key pharmacological parameters including ligand potency, affinity and cooperativity were derived using operational models of agonism and allostery. KEY RESULTS: mGlu1 mutants exhibited differential impacts on mGlu1 expression, with a C-terminus truncation significantly reducing surface expression. Mutations differentially influenced orthosteric ligand affinity, efficacy and functional cooperativity between allosteric and orthosteric ligands. Loss-of-function mutations L454F and N885del reduced orthosteric affinity and efficacy, respectively. A gain-of-function Y792C mutant mGlu1 displayed enhanced constitutive activity in IP1 assays, which manifested as reduced orthosteric agonist activity. The mGlu1 PAMs restored glutamate potency in iCa2+ mobilisation for loss-of-function mutations and mGlu1 NAMs displayed enhanced inverse agonist activity at Y792C relative to wild-type mGlu1. CONCLUSION AND IMPLICATIONS: Collectively, these data highlight distinct mechanisms by which mGlu1 mutations affect receptor function and show allosteric modulators may present a therapeutic strategy to restore aberrant mGlu1 function in rare SCA subtypes.

6.
Neurochem Int ; 178: 105786, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38843952

RESUMEN

Our previous study has identified that glutamate in the red nucleus (RN) facilitates the development of neuropathic pain through metabotropic glutamate receptors (mGluR). Here, we further explored the actions and possible molecular mechanisms of red nucleus mGluR Ⅰ (mGluR1 and mGluR5) in the development of neuropathic pain induced by spared nerve injury (SNI). Our data indicated that both mGluR1 and mGluR5 were constitutively expressed in the RN of normal rats. Two weeks after SNI, the expressions of mGluR1 and mGluR5 were significantly boosted in the RN contralateral to the nerve injury. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN contralateral to the nerve injury at 2 weeks post-SNI significantly ameliorated SNI-induced neuropathic pain. However, unilateral administration of mGluRⅠ agonist DHPG to the RN of normal rats provoked a significant mechanical allodynia, this effect could be blocked by LY367385 or MTEP. Further studies indicated that the expressions of TNF-α and IL-1ß in the RN were also elevated at 2 weeks post-SNI. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN at 2 weeks post-SNI significantly inhibited the elevations of TNF-α and IL-1ß. However, administration of mGluR Ⅰ agonist DHPG to the RN of normal rats significantly enhanced the expressions of TNF-α and IL-1ß, these effects were blocked by LY367385 or MTEP. These results suggest that activation of red nucleus mGluR1 and mGluR5 facilitate the development of neuropathic pain by stimulating the expressions of TNF-α and IL-1ß. mGluR Ⅰ maybe potential targets for drug development and clinical treatment of neuropathic pain.


Asunto(s)
Interleucina-1beta , Neuralgia , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico , Núcleo Rojo , Factor de Necrosis Tumoral alfa , Animales , Neuralgia/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/agonistas , Masculino , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Interleucina-1beta/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Ratas , Núcleo Rojo/metabolismo , Núcleo Rojo/efectos de los fármacos
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230481, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853546

RESUMEN

Group I metabotropic glutamate receptors (Gp1-mGluRs) exert a host of effects on cellular functions, including enhancement of protein synthesis and the associated facilitation of long-term potentiation (LTP) and induction of long-term depression (LTD). However, the complete cascades of events mediating these events are not fully understood. Gp1-mGluRs trigger α-secretase cleavage of amyloid precursor protein, producing soluble amyloid precursor protein-α (sAPPα), a known regulator of LTP. However, the α-cleavage of APP has not previously been linked to Gp1-mGluR's actions. Using rat hippocampal slices, we found that the α-secretase inhibitor tumour necrosis factor-alpha protease inhibitor-1, which inhibits both disintegrin and metalloprotease 10 (ADAM10) and 17 (ADAM17) activity, blocked or reduced the ability of the Gp1-mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) to stimulate protein synthesis, metaplastically prime future LTP and elicit sub-maximal LTD. In contrast, the specific ADAM10 antagonist GI254023X did not affect the regulation of plasticity, suggesting that ADAM17 but not ADAM10 is involved in mediating these effects of DHPG. However, neither drug affected LTD that was strongly induced by either high-concentration DHPG or paired-pulse synaptic stimulation. Our data suggest that moderate Gp1-mGluR activation triggers α-secretase sheddase activity targeting APP or other membrane-bound proteins as part of a more complex signalling cascade than previously envisioned. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Hipocampo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Biosíntesis de Proteínas , Receptores de Glutamato Metabotrópico , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ratas , Receptores de Glutamato Metabotrópico/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Hipocampo/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM10/metabolismo , Ratas Sprague-Dawley , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Proteínas de la Membrana/metabolismo
8.
Neuroscience ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936459

RESUMEN

Identified 40 years ago, the metabotropic glutamate (mGlu) receptors play key roles in modulating many synapses in the brain, and are still considered as important drug targets to treat various brain diseases. Eight genes encoding mGlu subunits have been identified. They code for complex receptors composed of a large extracellular domain where glutamate binds, connected to a G protein activating membrane domain. They are covalently linked dimers, a quaternary structure needed for their activation by glutamate. For many years they have only been considered as homodimers, then limiting the number of mGlu receptors to 8 subtypes composed of twice the same subunit. Twelve years ago, mGlu subunits were shown to also form heterodimers with specific subunits combinations, increasing the family up to 19 different potential dimeric receptors. Since then, a number of studies brought evidence for the existence of such heterodimers in the brain, through various approaches. Structural and molecular dynamic studies helped understand their peculiar activation process. The present review summarizes the approaches used to study their activation process and their pharmacological properties and to demonstrate their existence in vivo. We will highlight how the existence of mGlu heterodimers revolutionizes the mGlu receptor field, opening new possibilities for therapeutic intervention for brain diseases. As illustrated by the number of possible mGlu heterodimers, this study will highlight the need for further research to fully understand their role in physiological and pathological conditions, and to develop more specific therapeutic tools.

9.
Pharmacol Rep ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941064

RESUMEN

Metabotropic glutamate receptors (mGluRs) are part of the G protein-coupled receptors (GPCRs) family. They are coupled to Gαq (group I) or Gi/o (groups II and III) proteins, which result in the generation of diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) or the inhibition of adenylyl cyclase, respectively. mGluRs have been implicated in anxiety, depression, learning, and synaptic plasticity. Similarly, CB1 cannabinoid receptors (CB1Rs), also GPCRs, play roles in cognitive function and mood regulation through Gαi/o-mediated inhibition of adenylyl cyclase. Both mGluRs and CB1Rs exhibit surface labeling and undergo endocytosis. Given the similar cellular distribution and mechanisms of action, this review complies with fundamental data on the potential interactions and mutual regulation of mGluRs and CB1Rs in the context of depression, anxiety, and cognition, providing pioneering insights into their interplay.

10.
Front Endocrinol (Lausanne) ; 15: 1382861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919484

RESUMEN

Introduction: Gender incongruence (GI) is characterized by a marked incongruence between an individual's experienced/expressed gender and the assigned sex at birth. It includes strong displeasure about his or her sexual anatomy and secondary sex characteristics. In some people, this condition produces a strong distress with anxiety and depression named gender dysphoria (GD). This condition appears to be associated with genetic, epigenetics, hormonal as well as social factors. Given that L-glutamate is the major excitatory neurotransmitter in the central nervous system, also associated with male sexual behavior as well as depression, we aimed to determine whether metabotropic glutamate receptors are involved in GD. Methods: We analyzed 74 single nucleotide polymorphisms located at the metabotropic glutamate receptors (mGluR1, mGluR3, mGluR4, mGluR5, mGluR7 and mGluR8) in 94 transgender versus 94 cisgender people. The allele and genotype frequencies were analyzed by c2 test contrasting male and female cisgender and transgender populations. The strength of the associations was measured by binary logistic regression, estimating the odds ratio (OR) for each genotype. Measurement of linkage disequilibrium, and subsequent measurement of haplotype frequencies were also performed considering three levels of significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005. Furthermore, false positives were controlled with the Bonferroni correction (P ≤ 0.05/74 = 0.00067). Results: After analysis of allele and genotypic frequencies, we found twenty-five polymorphisms with significant differences at level P ≤ 0.05, five at P ≤ 0.005 and two at P ≤ 0.0005. Furthermore, the only two polymorphisms (rs9838094 and rs1818033) that passed the Bonferroni correction were both related to the metabotropic glutamate receptor 7 (mGluR7) and showed significant differences for multiple patterns of inheritance. Moreover, the haplotype T/G [OR=0.34 (0.19-0.62); P<0.0004] had a lower representation in the transgender population than in the cisgender population, with no evidence of sex cross-interaction. Conclusion: We provide genetic evidence that the mGluR7, and therefore glutamatergic neurotransmission, may be involved in GI and GD.


Asunto(s)
Polimorfismo de Nucleótido Simple , Receptores de Glutamato Metabotrópico , Humanos , Masculino , Receptores de Glutamato Metabotrópico/genética , Femenino , Adulto , Personas Transgénero , Disforia de Género/genética , Genotipo , Adulto Joven , Persona de Mediana Edad , Desequilibrio de Ligamiento
11.
Curr Neuropharmacol ; 22(11): 1923-1939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509672

RESUMEN

BACKGROUND: Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal. OBJECTIVE: Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine. METHODS: Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas. RESULTS: The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature. CONCLUSION: Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.


Asunto(s)
Neoplasias Encefálicas , Biología Computacional , Glioblastoma , Receptores de Glutamato Metabotrópico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Neurotransmisores/metabolismo
12.
Trends Cell Biol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38514304

RESUMEN

Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.

13.
Brain Neurosci Adv ; 8: 23982128231223579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298523

RESUMEN

The modulation of synaptic efficacy by group I metabotropic glutamate receptors is dysregulated in several neurodevelopmental and neurodegenerative disorders impacting cognitive function. The progression and severity of these and other disorders are affected by biological sex, and differences in metabotropic glutamate receptor signalling have been implicated in this effect. In this study, we have examined whether there are any sex-dependent differences in a form of long-term depression of synaptic responses that is triggered by application of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG). We studied DHPG-induced long-term depression at the Schaffer collateral-commissural pathway in area CA1 of hippocampal slices prepared from three separate age groups of Sprague Dawley rats. In both juvenile (2-week-old) and young adult (3-month-old) rats, there were no differences between sexes in the magnitude of long-term depression. However, in older adult (>1-year-old) rats, DHPG-induced long-term depression was greater in males. In contrast, there were no differences between sexes with respect to basal synaptic transmission or paired-pulse facilitation in any age group. The specific enhancement of metabotropic glutamate receptor-dependent long-term depression in older adult males, but not females, reinforces the importance of considering sex as a factor in the study and treatment of brain disorders.

14.
J Neurotrauma ; 41(5-6): 714-733, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917117

RESUMEN

Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.


Asunto(s)
Traumatismos por Explosión , Receptores de Glutamato Metabotrópico , Trastornos por Estrés Postraumático , Masculino , Animales , Ratas , Ansiedad , Traumatismos por Explosión/complicaciones , Amígdala del Cerebelo
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1026881

RESUMEN

Objective To observe the effects of electroacupuncture(EA)on glutamate(Glu),metabotropic glutamate receptor 2/3(mGluR2/3)and apoptosis related proteins expression in hippocampus in rats with acute myocardial ischemia(AMI);To explore the mechanism of EA against AMI.Methods Totally 50 SD rats were randomly divided into sham-operation group,model group,EA group and inhibitor group,with 10 rats in each group.Except for the sham-operation group,the rats were treated with ligation at the left anterior descending coronary artery to establish AMI model.The rats in the EA group was treated with EA at"Shenmen"and"Tongli",30 minutes each time,once a day for 3 consecutive days.The rats in the inhibitor group were treated with injection of LY341459 via the lateral ventricle 30 min after modeling.HE staining was used to observe myocardial tissue morphology,and ELISA was used to detect Caspase-3 activity in myocardial tissue and Glu content in hippocampal tissue,immunofluorescence staining was used to detect mGluR2/3 expression in hippocampal tissue,TUNEL staining was used to detect apoptosis in hippocampal tissue cells,Western blot was used to detect the expressions of PI3K,Akt,and Caspase-3 protein in hippocampal tissue.Results Compared with the sham-operation group,the myocardial cells of the model group rats showed sparse and swelling with severe infiltration of inflammatory cells;the activity of Caspase-3 in myocardial tissue significantly increased,and the Glu content,positive expression of mGluR2/3,number of apoptotic cells in hippocampal tissue significantly increased(P<0.01),and the expressions of PI3K and Akt proteins in hippocampal tissue were significantly decreased,while the expression of Caspase-3 protein significantly increased(P<0.01).Compared with the model group,myocardial cell edema and inflammatory cell infiltration were reduced in the EA group and inhibitor group,the activity of Caspase-3 in myocardial tissue was significantly decreased,the Glu content,positive expression of mGluR2/3,and number of apoptotic cells in hippocampal tissue were significantly reduced(P<0.01),the expressions of PI3K and Akt proteins in hippocampal tissue significantly increased,while the expression of Caspase-3 protein significantly decreased(P<0.01).Conclusion EA can improve myocardial injury in AMI rats,and its mechanism may be related to activation of PI3K/Akt signaling pathway,inhibition of hippocampal mGluR2/3 overexpression,reduction of Glu accumulation,inhibition of apoptosis of hippocampal neurons and reduction of neurotoxicity.

16.
Neuroscience ; 538: 11-21, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38103860

RESUMEN

Persistent stress increases the probability for developing depression significantly thereafter. Repeated social defeat stress is a widely used model to investigate depressive-like behavior in preclinical models. Hence, the repeated social defeat stress model provided an ideal animal model, through which the hypotheses of prevention and treatment can be investigated. We have successfully induced depressive-like behavior for male C57BL/6J mice with this model. Here, we reported that certain level of during-stress social interactions with single female or multiple male peer(s) exerted a positive role in preventing the development of depressive-like behavior induced by repeated social defeat stress. Our data suggested that the stress-susceptible mice may benefit from positive social interaction, which reduces the chance for depressive-like behavior development. Since numerous studies indicate that the metabotropic glutamate receptor 5 (mGluR5) plays an important role in various cognitive functions, we further investigate the treatment effect of 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) on the depressive-like behavior induced by repeated social defeat stress. Most importantly, robust anti-depressant effects have been achieved through modulating the mGluR5 function. We found that single oral dose administration of CDPPB (20 mg/kg), to some extent, alleviated the social avoidance behaviors for the stress-susceptible mice. Our data implies that the CDPPB, a positive allosteric modulator of mGluR5, is a promising anti-depressant candidate with limited side effect.


Asunto(s)
Compuestos de Bifenilo , Pirazoles , Derrota Social , Interacción Social , Ratones , Masculino , Animales , Femenino , Regulación Alostérica , Ratones Endogámicos C57BL , Benzamidas/farmacología , Benzamidas/uso terapéutico , Conducta Social
17.
Brain Behav Immun ; 114: 131-143, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604212

RESUMEN

Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8+ T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR+ expression by CD8+ T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8+ T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.

19.
Pharmacol Biochem Behav ; 227-228: 173588, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37348610

RESUMEN

Modulation of glutamate receptors has demonstrated anxiolytic and/or antidepressant effects in rodent stress models. The chick social-separation stress paradigm exposes socially raised aves to an isolation stressor which elicits distress vocalizations (DVocs) in an attempt to re-establish contact. The model presents a state of panic during the first 5 min followed by a state of behavioral despair during the last 60 to 90 min. Making it useful as a dual anxiolytic/antidepressant screening assay. Further research has identified the Black Australorp strain as a stress-vulnerable, treatment-resistant, and ketamine-sensitive genetic line. Utilizing this genetic line, we sought to evaluate modulation of glutamatergic receptors for potential anxiolytic and/or antidepressant effects. Separate dose-response studies were conducted for the following drugs: the AMPA PAM LY392098, the mGluR 5 antagonist MPEP, the mGluR 2/3 agonist LY404039, the mGluR 2/3 antagonist LY341495, and the mGluR 7 agonist AMN082. The norepinephrine α2 agonist clonidine and the NMDA antagonist ketamine were included as comparison for anxiolytic (anti-panic) and antidepressant effects, respectively. As in previous studies, clonidine reduced DVoc rates during the first 5 min (attenuation of panic) and ketamine elevated DVoc rates (attenuation of behavioral despair) during the last 60 min of isolation. The mGluR 2/3 agonist LY404039 and the mGluR 5 antagonist MPEP decreased DVoc rates during the first 5 min of isolation indicative of anxiolytic effects like that of clonidine while the mGluR 7 agonist AMN082 elevated DVoc rates in the later hour of isolation, representative of antidepressant effects like that of ketamine. Collectively, these findings suggest that certain glutamate targets may be clinically useful in treating panic disorder and/or treatment-resistant depression.


Asunto(s)
Ansiolíticos , Ketamina , Ansiolíticos/farmacología , Depresión/tratamiento farmacológico , Ketamina/farmacología , Evaluación Preclínica de Medicamentos , Prueba de Esfuerzo , Clonidina , Antidepresivos/farmacología
20.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175959

RESUMEN

We studied the neuroprotective properties of the non-competitive NMDA receptor antagonist memantine, in combination with a positive allosteric modulator of metabotropic glutamate receptors of Group III, VU 0422288. The treatment was started 48 h after the injection of neurotoxic agent trimethyltin (TMT) at 7.5 mg/kg. Three weeks after TMT injection, functional and morphological changes in a rat hippocampus were evaluated, including the expression level of genes characterizing glutamate transmission and neuroinflammation, animal behavior, and hippocampal cell morphology. Significant neuronal cell death occurred in the CA3 and CA4 regions, and to a lesser extent, in the CA1 and CA2 regions. The death of neurons in the CA1 field was significantly reduced in animals with a combined use of memantine and VU 0422288. In the hippocampus of these animals, the level of expression of genes characterizing glutamatergic synaptic transmission (Grin2b, Gria1, EAAT2) did not differ from the level in control animals, as well as the expression of genes characterizing neuroinflammation (IL1b, TGF beta 1, Aif1, and GFAP). However, the expression of genes characterizing neuroinflammation was markedly increased in the hippocampus of animals treated with memantine or VU 0422288 alone after TMT. The results of immunohistochemical studies confirmed a significant activation of microglia in the hippocampus three weeks after TMT injection. In contrast to the hilus, microglia in the CA1 region had an increase in rod-like cells. Moreover, in the CA1 field of the hippocampus of the animals of the MEM + VU group, the amount of such microglia was close to the control. Thus, the short-term modulation of glutamatergic synaptic transmission by memantine and subsequent activation of Group III mGluR significantly affected the dynamics of neurodegeneration in the hippocampus.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Compuestos de Trimetilestaño , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacología , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Compuestos de Trimetilestaño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA