Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Adv Sci (Weinh) ; : e2408705, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287062

RESUMEN

Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi-omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi-omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high-throughput experimental data shows that EM_iBsu1209-ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high-performance multi-omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.

2.
Foods ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611312

RESUMEN

This study investigates the impact of urea and ß-GP on the growth of Streptococcus thermophilus S-3, a bacterium commonly used in industrial fermentation processes. Through a series of growth experiments, transcriptome, metabolome, and omics-based analyses, the research demonstrates that both urea and ß-GP can enhance the biomass of S. thermophilus, with urea showing a more significant effect. The optimal urea concentration for growth was determined to be 3 g/L in M17 medium. The study also highlights the metabolic pathways influenced by urea and ß-GP, particularly the galactose metabolism pathway, which is crucial for cell growth when lactose is the substrate. The integration of omics data into the genome-scale metabolic model of S. thermophilus, iCH502, allowed for a more accurate prediction of metabolic fluxes and growth rates. The study concludes that urea can serve as a viable substitute for ß-GP in the cultivation of S. thermophilus, offering potential cost and efficiency benefits in industrial fermentation processes. The findings are supported by validation experiments with 11 additional strains of S. thermophilus, which showed increased biomass in UM17 medium.

3.
Metab Eng ; 83: 172-182, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648878

RESUMEN

Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L-1 in 96 h in the fermenter-level fed-batch mode. This indicated that the integration of optimization algorithm and synthetic biology approaches was efficiently rational for PNP-producing strain design.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simulación por Computador , Técnicas de Silenciamiento del Gen , Terpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Adv Appl Microbiol ; 126: 1-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38637105

RESUMEN

The genome-scale metabolic network model is an effective tool for characterizing the gene-protein-response relationship in the entire metabolic pathway of an organism. By combining various algorithms, the genome-scale metabolic network model can effectively simulate the influence of a specific environment on the physiological state of cells, optimize the culture conditions of strains, and predict the targets of genetic modification to achieve targeted modification of strains. In this review, we summarize the whole process of model building, sort out the various tools that may be involved in the model building process, and explain the role of various algorithms in model analysis. In addition, we also summarized the application of GSMM in network characteristics, cell phenotypes, metabolic engineering, etc. Finally, we discuss the current challenges facing GSMM.


Asunto(s)
Genoma , Redes y Vías Metabólicas , Redes y Vías Metabólicas/genética , Ingeniería Metabólica , Modelos Biológicos
5.
BMC Genomics ; 25(1): 63, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229031

RESUMEN

BACKGROUND: Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS: In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS: iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.


Asunto(s)
Pseudomonas putida , Solventes/metabolismo , Pseudomonas putida/genética , Genoma Bacteriano , Genómica/métodos , Redes y Vías Metabólicas/genética
6.
Biotechnol Adv ; 72: 108319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38280495

RESUMEN

The construction of high-performance microbial cell factories (MCFs) is the centerpiece of biomanufacturing. However, the complex metabolic regulatory network of microorganisms poses great challenges for the efficient design and construction of MCFs. The genome-scale metabolic network models (GSMs) can systematically simulate the metabolic regulation process of microorganisms in silico, providing effective guidance for the rapid design and construction of MCFs. In this review, we summarized the development status of 16 important industrial microbial GSMs, and further outline the technologies or methods that continuously promote high-quality GSMs construction from five aspects: I) Databases and modeling tools facilitate GSMs reconstruction; II) evolving gap-filling technologies; III) constraint-based model reconstruction; IV) advances in algorithms; and V) developed visualization tools. In addition, we also summarized the applications of GSMs in guiding metabolic engineering from four aspects: I) exploring and explaining metabolic features; II) predicting the effects of genetic perturbations on metabolism; III) predicting the optimal phenotype; IV) guiding cell factories construction in practical experiment. Finally, we discussed the development of GSMs, aiming to provide a reference for efficiently reconstructing GSMs and guiding metabolic engineering.


Asunto(s)
Disacáridos , Glucuronatos , Ingeniería Metabólica , Redes y Vías Metabólicas , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Fenotipo
7.
J Sci Food Agric ; 104(3): 1458-1469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814322

RESUMEN

BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.


Asunto(s)
Redes y Vías Metabólicas , Streptococcus thermophilus , Animales , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentación , Leche/química , Urea/metabolismo , Adenosina Trifosfato/análisis
8.
Front Microbiol ; 14: 1277847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053556

RESUMEN

Sulfur-oxidizing bacteria play a crucial role in various processes, including mine bioleaching, biodesulfurization, and treatment of sulfur-containing wastewater. Nevertheless, the pathway involved in sulfur oxidation is highly intricate, making it complete comprehension a formidable and protracted undertaking. The mechanisms of sulfur oxidation within the Acidithiobacillus genus, along with the process of energy production, remain areas that necessitate further research and elucidation. In this study, a novel strain of sulfur-oxidizing bacterium, Acidithiobacillus Ameehan, was isolated. Several physiological characteristics of the strain Ameehan were verified and its complete genome sequence was presented in the study. Besides, the first genome-scale metabolic network model (AMEE_WP1377) was reconstructed for Acidithiobacillus Ameehan to gain a comprehensive understanding of the metabolic capacity of the strain.The characteristics of Acidithiobacillus Ameehan included morphological size and an optimal growth temperature range of 37-45°C, as well as an optimal growth pH range of pH 2.0-8.0. The microbe was found to be capable of growth when sulfur and K2O6S4 were supplied as the energy source and electron donor for CO2 fixation. Conversely, it could not utilize Na2S2O3, FeS2, and FeSO4·7H2O as the energy source or electron donor for CO2 fixation, nor could it grow using glucose or yeast extract as a carbon source. Genome annotation revealed that the strain Ameehan possessed a series of sulfur oxidizing genes that enabled it to oxidize elemental sulfur or various reduced inorganic sulfur compounds (RISCs). In addition, the bacterium also possessed carbon fixing genes involved in the incomplete Calvin-Benson-Bassham (CBB) cycle. However, the bacterium lacked the ability to oxidize iron and fix nitrogen. By implementing a constraint-based flux analysis to predict cellular growth in the presence of 71 carbon sources, 88.7% agreement with experimental Biolog data was observed. Five sulfur oxidation pathways were discovered through model simulations. The optimal sulfur oxidation pathway had the highest ATP production rate of 14.81 mmol/gDW/h, NADH/NADPH production rate of 5.76 mmol/gDW/h, consumed 1.575 mmol/gDW/h of CO2, and 1.5 mmol/gDW/h of sulfur. Our findings provide a comprehensive outlook on the most effective cellular metabolic pathways implicated in sulfur oxidation within Acidithiobacillus Ameehan. It suggests that the OMP (outer-membrane proteins) and SQR enzymes (sulfide: quinone oxidoreductase) have a significant impact on the energy production efficiency of sulfur oxidation, which could have potential biotechnological applications.

9.
Stud Health Technol Inform ; 308: 111-122, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38007732

RESUMEN

Biosynthesis of plant-derived natural products in the eukaryotic microbe Saccharomyces cerevisiae often faces the issue of the inefficient production due to the poor compatibility between the heterologous genes and chassis cells. In order to improve the biosynthetic efficiency of heterologous production of plant secondary metabolites in S. cerevisiae, people usually do metabolic engineering in and around the heterologous metabolic pathways based on researchers' experience and mass of trials, which usually consumes a lot of manpower and financial resources. Herein, to further improve the heterologous production of oleanolic acid (OA), a pentacyclic triterpenoid in many plants with several promising pharmacological activities, in a genetically engineered, OA-producing strain S. cerevisiae OA07 effectively, a genome-scale metabolic model of the strain was developed, with the named as Yeast-OA07, and then OptKnock, a flux balance analysis-based pathway design algorithm with bilevel objectives, was utilized to develop in silico gene-knockout strategies to guide the molecular operations in S. cerevisiae OA07. Yeast8-OA07 contained 1133 genes, 2702 metabolites, and 3997 reactions. Five in silico gene-knockout strategies, which were expected to increase OA productivities, were obtained based on the metabolic flux analysis of Yeast8-OA07 through OptKnock. Afterwards, five mutant strains, named as LK1, LK2, LK3, LK4 and LK5, were constructed according to the in silico strategies. It was found that the mutant strain LK2, in which 2-amino-4-hydroxy-6-hydroxymethyl dihydropteridine diphosphokinase-encoding gene FOL1 and formate dehydrogenase-encoding gene FDH1 were deleted, had an OA yield of 125.04 mg·L-1, which was significantlyhigher than the original strain OA07 (89.50 mg·L-1), while the mutant strain LK5, which eliminated paminobenzoic acid synthase-encoding gene ABZ1 and glycine hydroxymethyl transferase-encoding gene SHM1, had an even higher OA yield of 207.37 mg·L-1. Nevertheless, strain LK6, which was developed by integrating the in silico gene-knockout strategies of LK2 and LK5, had a significant decrease of OA production than S. cerevisiae OA07, indicating that in silico knockout strategies do not fit to in vivo iteration directly. Our study provides a novel, efficient method to improve the heterologous production of plant metabolites in microbial cell factories.


Asunto(s)
Ácido Oleanólico , Triterpenos , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Oleanólico/metabolismo , Ingeniería Metabólica/métodos , Triterpenos/metabolismo
10.
Biotechnol Bioeng ; 120(8): 2301-2313, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37448239

RESUMEN

Genome-scale metabolic network model (GSMM) based on enzyme constraints greatly improves general metabolic models. The turnover number ( k cat ${k}_{\mathrm{cat}}$ ) of enzymes is used as a parameter to limit the reaction when extending GSMM. Therefore, turnover number plays a crucial role in the prediction accuracy of cell metabolism. In this work, we proposed an enzyme-constrained GSMM parameter optimization method. First, sensitivity analysis of the parameters was carried out to select the parameters with the greatest influence on predicting the specific growth rate. Then, differential evolution (DE) algorithm with adaptive mutation strategy was adopted to optimize the parameters. This algorithm can dynamically select five different mutation strategies. Finally, the specific growth rate prediction, flux variability, and phase plane of the optimized model were analyzed to further evaluate the model. The enzyme-constrained GSMM of Saccharomyces cerevisiae, ecYeast8.3.4, was optimized. Results of the sensitivity analysis showed that the optimization variables can be divided into three groups based on sensitivity: most sensitive (149 k cat ${k}_{\mathrm{cat}}$ c), highly sensitive (1759 k cat ${k}_{\mathrm{cat}}$ ), and nonsensitive (2502 k cat ${k}_{\mathrm{cat}}$ ) groups. Six optimization strategies were developed based on the results of the sensitivity analysis. The results showed that the DE with adaptive mutation strategy can indeed improve the model by optimizing highly sensitive parameters. Retaining all parameters and optimizing the highly sensitive parameters are the recommended optimization strategy.


Asunto(s)
Algoritmos , Redes y Vías Metabólicas , Redes y Vías Metabólicas/genética , Mutación , Modelos Biológicos
11.
Comput Biol Med ; 158: 106833, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015178

RESUMEN

Acetoin was widely used in food, medicine, and other industries, because of its unique fragrance. Bacillus amyloliquefaciens was recognized as a safe strain and a promising acetoin producer in fermentation. However, due to the complexity of its metabolic network, it had not been fully utilized. Therefore, a genome-scale metabolic network model (iJYQ746) of B. amyloliquefaciens was constructed in this study, containing 746 genes, 1736 reactions, and 1611 metabolites. The results showed that Mg2+, Mn2+, and Fe2+ have inhibitory effects on acetoin. When the stirring speed was 400 rpm, the maximum titer was 49.8 g L-1. Minimization of metabolic adjustments (MOMA) was used to identify potential metabolic modification targets 2-oxoglutarate aminotransferase (serC, EC 2.6.1.52) and glucose-6-phosphate isomerase (pgi, EC 5.3.1.9). These targets could effectively accumulate acetoin by increasing pyruvate content, and the acetoin synthesis rate was increased by 610% and 10%, respectively. This provides a theoretical basis for metabolic engineering to reasonably transform B. amyloliquefaciens and produce acetoin.


Asunto(s)
Acetoína , Ingeniería Metabólica , Acetoína/metabolismo , Fermentación , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética
12.
Mol Syst Biol ; 19(5): e11443, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36942755

RESUMEN

Metabolism is controlled to ensure organismal development and homeostasis. Several mechanisms regulate metabolism, including allosteric control and transcriptional regulation of metabolic enzymes and transporters. So far, metabolism regulation has mostly been described for individual genes and pathways, and the extent of transcriptional regulation of the entire metabolic network remains largely unknown. Here, we find that three-quarters of all metabolic genes are transcriptionally regulated in the nematode Caenorhabditis elegans. We find that many annotated metabolic pathways are coexpressed, and we use gene expression data and the iCEL1314 metabolic network model to define coregulated subpathways in an unbiased manner. Using a large gene expression compendium, we determine the conditions where subpathways exhibit strong coexpression. Finally, we develop "WormClust," a web application that enables a gene-by-gene query of genes to view their association with metabolic (sub)-pathways. Overall, this study sheds light on the ubiquity of transcriptional regulation of metabolism and provides a blueprint for similar studies in other organisms, including humans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Programas Informáticos
13.
Malar J ; 22(1): 56, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788578

RESUMEN

BACKGROUND: Spiroindolone and pyrazoleamide antimalarial compounds target Plasmodium falciparum P-type ATPase (PfATP4) and induce disruption of intracellular Na+ homeostasis. Recently, a PfATP4 mutation was discovered that confers resistance to a pyrazoleamide while increasing sensitivity to a spiroindolone. Transcriptomic and metabolic adaptations that underlie this seemingly contradictory response of P. falciparum to sublethal concentrations of each compound were examined to understand the different cellular accommodation to PfATP4 disruptions. METHODS: A genetically engineered P. falciparum Dd2 strain (Dd2A211V) carrying an Ala211Val (A211V) mutation in PfATP4 was used to identify metabolic adaptations associated with the mutation that results in decreased sensitivity to PA21A092 (a pyrazoleamide) and increased sensitivity to KAE609 (a spiroindolone). First, sublethal doses of PA21A092 and KAE609 causing substantial reduction (30-70%) in Dd2A211V parasite replication were identified. Then, at this sublethal dose of PA21A092 (or KAE609), metabolomic and transcriptomic data were collected during the first intraerythrocytic developmental cycle. Finally, the time-resolved data were integrated with a whole-genome metabolic network model of P. falciparum to characterize antimalarial-induced physiological adaptations. RESULTS: Sublethal treatment with PA21A092 caused significant (p < 0.001) alterations in the abundances of 91 Plasmodium gene transcripts, whereas only 21 transcripts were significantly altered due to sublethal treatment with KAE609. In the metabolomic data, a substantial alteration (≥ fourfold) in the abundances of carbohydrate metabolites in the presence of either compound was found. The estimated rates of macromolecule syntheses between the two antimalarial-treated conditions were also comparable, except for the rate of lipid synthesis. A closer examination of parasite metabolism in the presence of either compound indicated statistically significant differences in enzymatic activities associated with synthesis of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. CONCLUSION: The results of this study suggest that malaria parasites activate protein kinases via phospholipid-dependent signalling in response to the ionic perturbation induced by the Na+ homeostasis disruptor PA21A092. Therefore, targeted disruption of phospholipid signalling in PA21A092-resistant parasites could be a means to block the emergence of resistance to PA21A092.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum , Fosfolípidos/metabolismo , Fosfolípidos/uso terapéutico
14.
Metab Eng ; 75: 100-109, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402409

RESUMEN

Carbon isotope labeling method is a standard metabolic engineering tool for flux quantification in living cells. To cope with the high dimensionality of isotope labeling systems, diverse algorithms have been developed to reduce the number of variables or operations in metabolic flux analysis (MFA), but lacks generalizability to non-stationary metabolic conditions. In this study, we present a stochastic simulation algorithm (SSA) derived from the chemical master equation of the isotope labeling system. This algorithm allows to compute the time evolution of isotopomer concentrations in non-stationary conditions, with the valuable property that computational time does not scale with the number of isotopomers. The efficiency and limitations of the algorithm is benchmarked for the forward and inverse problems of 13C-DMFA in the pentose phosphate pathways, and is compared with EMU-based methods for NMFA and MFA including the central carbon metabolism. Overall, SSA constitutes an alternative class to deterministic approaches for metabolic flux analysis that is well adapted to comprehensive dataset including parallel labeling experiments, and whose limitations associated to the sampling size can be overcome by using Monte Carlo sampling approaches.


Asunto(s)
Algoritmos , Carbono , Simulación por Computador , Isótopos de Carbono/metabolismo , Vía de Pentosa Fosfato , Análisis de Flujos Metabólicos/métodos , Marcaje Isotópico/métodos , Modelos Biológicos
15.
ACS Synth Biol ; 11(12): 4123-4133, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36442151

RESUMEN

Pyrimidine ribonucleotide de novo biosynthesis pathway (PRdnBP) is an important pathway to produce pyrimidine nucleosides. We attempted to systematically investigate PRdnBP in Escherichia coli with genome-scale metabolic models and utilized the models to guide strain design. The balance of central carbon metabolism and PRdnBP affected the production of cytidine from glucose. Using Bayesian metabolic flux analysis, the effect of modified PRdnBP on the metabolic network was analyzed. The acetate overflow became coupled with PRdnBP flux, while they were originally independent under oxygen-sufficient conditions. The coupling between cytidine production and acetate secretion in the modified strain was weakened by arcA deletion, which resulted in further improving the efficient accumulation of cytidine. In total, 1.28 g/L of cytidine with a yield of 0.26 g/g glucose was produced. The yield of cytidine produced by E. coli is higher than previous reports. Our strategy provides an effective attempt to find metabolic bottlenecks in genetically engineered bacteria by using flux coupling analysis.


Asunto(s)
Citidina , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Citidina/genética , Citidina/metabolismo , Teorema de Bayes , Glucosa/metabolismo , Acetatos/metabolismo , Computadores , Ingeniería Metabólica/métodos
16.
Biotechnol Biofuels Bioprod ; 15(1): 82, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953809

RESUMEN

BACKGROUND: Purine nucleosides play essential roles in cellular physiological processes and have a wide range of applications in the fields of antitumor/antiviral drugs and food. However, microbial overproduction of purine nucleosides by de novo metabolic engineering remains a great challenge due to their strict and complex regulatory machinery involved in biosynthetic pathways. RESULTS: In this study, we designed an in silico-guided strategy for overproducing purine nucleosides based on a genome-scale metabolic network model in Bacillus subtilis. The metabolic flux was analyzed to predict two key backflow nodes, Drm (purine nucleotides toward PPP) and YwjH (PPP-EMP), to resolve the competitive relationship between biomass and purine nucleotide synthesis. In terms of the purine synthesis pathway, the first backflow node Drm was inactivated to block the degradation of purine nucleotides, which greatly increased the inosine production to 13.98-14.47 g/L without affecting cell growth. Furthermore, releasing feedback inhibition of the purine operon by promoter replacement enhanced the accumulation of purine nucleotides. In terms of the central carbon metabolic pathways, the deletion of the second backflow node YwjH and overexpression of Zwf were combined to increase inosine production to 22.01 ± 1.18 g/L by enhancing the metabolic flow of PPP. By switching on the flux node of the glucose-6-phosphate to PPP or EMP, the final inosine engineered strain produced up to 25.81 ± 1.23 g/L inosine by a pgi-based metabolic switch with a yield of 0.126 mol/mol glucose, a productivity of 0.358 g/L/h and a synthesis rate of 0.088 mmol/gDW/h, representing the highest yield in de novo engineered inosine bacteria. Under the guidance of this in silico-designed strategy, a general chassis bacterium was generated, for the first time, to efficiently synthesize inosine, adenosine, guanosine, IMP and GMP, which provides sufficient precursors for the synthesis of various purine intermediates. CONCLUSIONS: Our study reveals that in silico-guided metabolic engineering successfully optimized the purine synthesis pathway by exploring efficient targets, which could be applied as a superior strategy for efficient biosynthesis of biotechnological products.

17.
Sheng Wu Gong Cheng Xue Bao ; 38(4): 1554-1564, 2022 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-35470626

RESUMEN

Graph-theory-based pathway analysis is a commonly used method for pathway searching in genome-scale metabolic networks. However, such searching often results in many pathways biologically infeasible due to the presence of currency metabolites (e.g. H+, H2O, CO2, ATP etc.). Several methods have been proposed to address the problem but up to now there is no well-recognized methods for processing the currency metabolites. In this study, we proposed a new method based on the function of currency metabolites for transferring of functional groups such as phosphate. We processed most currency metabolites as pairs rather than individual metabolites, and ranked the pairs based on their importance in transferring functional groups, in order to make sure at least one main metabolite link exists for any reaction. The whole process can be done automatically by programming. Comparison with existing approaches indicates that more biologically infeasible pathways were removed by our method and the calculated pathways were more reliable, which may facilitate the graph-theory-based pathway design and visualization.


Asunto(s)
Genoma , Redes y Vías Metabólicas
18.
J Microbiol Methods ; 197: 106459, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395336

RESUMEN

Extremophilic bacteria have numerous uncovered biotechnological potentials. Acidophilic bacteria are important iron oxidizers that are valuable in bioleaching and in studying extreme environments on earth and in space. Despite their obvious potential, little is known about the genetic traits that underpin their metabolic functions, which are equally poorly understood from a mechanistic perspective. Novel bioinformatics and computational biology pipelines can be used to analyze whole genomes to obtain insights into the phenotypic potential of organisms as well as develop a mathematical model representation of metabolism. Whole-genome sequence analysis and a genome-scale metabolic network model was curated for an iron-oxidizing bacterium initially isolated from an acid mine drainage in Turkey, previously identified as Alicyclobacillus tolerans. The genome contained a high proportion of genes for energy generation from carbohydrates, amino acids synthesis and conversion, nucleic acid metabolism and repair which contribute to robust adaption to their extreme environments. Several candidate genes for pyrite metabolism, iron uptake, regulation and storage, as well as genes for resistance to important heavy metals were annotated. A curated genome-scale metabolic network analysis accurately predicted facultative anaerobic growth, heterotrophic characteristics, and growth on a wide variety of carbon sources. This is the first in-depth in silico analysis of A. tolerans to the best of our knowledge which is expected to lay the groundwork for future research and drive innovations in environmental microbiology and biotechnological applications. The genomic data and mechanistic framework will have applications in biomining, synthetic geomicrobiology on earth, as well as for space exploration and settlement.


Asunto(s)
Bacterias , Hierro , Alicyclobacillus , Bacterias/genética , Biotecnología , Hierro/metabolismo , Redes y Vías Metabólicas/genética , Filogenia , Análisis de Secuencia
19.
Biotechnol Bioeng ; 119(5): 1278-1289, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35128633

RESUMEN

The synthesis of vitamin D3 precursor 7-dehydrocholesterol (7-DHC) by microbial fermentation has much attracted attention owing to its advantages of environmental protection. In this study, Saccharomyces cerevisiae was engineered for a de novo biosynthesis of 7-DHC. First, seven essential genes (six endogenous genes and one heterologous gene) were overexpressed, and the ROX1 gene (heme-dependent repressor of hypoxic genes) was knocked out. The resulting strain produced 82.6 mg/L 7-DHC from glucose. Then, we predicted five gene knockout targets for 7-DHC overproduction by the reconstruction of genome-scale metabolic model. GDH1 gene knockout increased the 7-DHC titer from 82.6 to 101.5 mg/L, and the specific growth rate of the ΔGDH1 mutant was also increased by 28%. Next, Ty1 transposon in S. cerevisiae was applied to increase the copies of the ERG1 gene and DHCR24 gene, resulting in a 120% increase in 7-DHC titer to 223.3 mg/L. Besides, to optimize the metabolic flux distribution, Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) system was used to dynamically inhibit the competitive pathway, and the best binding site of ERG6 (delta (24)-sterol C-methyltransferase) promoter was screened out. The OD600 value of ERG6 regulated cells increased by 43% than knocking out ERG6 directly, and 7-DHC titer increased to 365.5 mg/L in a shake flask. Finally, the 7-DHC titer reached 1328 mg/L in 3-L bioreactor and the specific titer of 7-DHC reached up to 114.7 mg/g dry cell weight). Overall, this study constructed a yeast chassis for the highly efficient production of 7-DHC by systems metabolic engineering.


Asunto(s)
Deshidrocolesteroles , Saccharomyces cerevisiae , Deshidrocolesteroles/metabolismo , Fermentación , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Chinese Journal of Biotechnology ; (12): 1554-1564, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-927800

RESUMEN

Graph-theory-based pathway analysis is a commonly used method for pathway searching in genome-scale metabolic networks. However, such searching often results in many pathways biologically infeasible due to the presence of currency metabolites (e.g. H+, H2O, CO2, ATP etc.). Several methods have been proposed to address the problem but up to now there is no well-recognized methods for processing the currency metabolites. In this study, we proposed a new method based on the function of currency metabolites for transferring of functional groups such as phosphate. We processed most currency metabolites as pairs rather than individual metabolites, and ranked the pairs based on their importance in transferring functional groups, in order to make sure at least one main metabolite link exists for any reaction. The whole process can be done automatically by programming. Comparison with existing approaches indicates that more biologically infeasible pathways were removed by our method and the calculated pathways were more reliable, which may facilitate the graph-theory-based pathway design and visualization.


Asunto(s)
Genoma , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA