Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
ACS Appl Bio Mater ; 7(9): 5956-5964, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39190068

RESUMEN

Mesenchymal stromal cells (MSCs) have the potential to be used as autologous or allogenic cell therapy in several diseases due to their beneficial secretome and capacity for immunomodulation and differentiation. However, clinical trials using MSCs require a large number of cells. As an alternative to traditional culture flasks, suspension bioreactors provide a scalable platform to produce clinically relevant quantities of cells. When cultured in bioreactors, anchorage-dependent cells like MSCs require the addition of microcarriers, which provide a surface for cell attachment while in suspension. The best performing microcarriers are typically coated in animal derived proteins, which increases cellular attachment and proliferation but present issues from a regulatory perspective. To overcome this issue, a recombinant fusion protein was generated linking basic fibroblast growth factor (bFGF) to a cellulose-specific carbohydrate binding module (CBM) and used to functionalize the surface of cellulose microcarriers for the expansion of human umbilical MSCs in suspension bioreactors. The fusion protein was shown to support the growth of MSCs when used as a soluble growth factor in the absence of cellulose, readily bound to cellulose microcarriers in a dose-dependent manner, and ultimately improved the expansion of MSCs when grown in bioreactors using cellulose microcarriers. The use of CBM fusion proteins offers a simple method for the surface immobilization of growth factors to animal component-free substrates such as cellulose, which can be used alongside bioreactors to increase growth factor lifespan, decrease culture medium cost, and increase cell production in the manufacturing of therapeutic cells.


Asunto(s)
Reactores Biológicos , Proliferación Celular , Celulosa , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Celulosa/química , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Tamaño de la Partícula , Ensayo de Materiales , Células Cultivadas , Técnicas de Cultivo de Célula , Módulos de Unión a Carbohidratos
2.
Front Cell Dev Biol ; 12: 1400347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129786

RESUMEN

Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.

3.
Tissue Cell ; 90: 102527, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181089

RESUMEN

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.


Asunto(s)
Células Progenitoras Endoteliales , Fallo Renal Crónico , Células Madre Mesenquimatosas , Simulación del Acoplamiento Molecular , Insuficiencia Renal Crónica , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Fallo Renal Crónico/patología , Fallo Renal Crónico/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Riñón/patología , Riñón/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto
4.
Front Vet Sci ; 11: 1403174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840629

RESUMEN

Here, we describe a case of a 5-year-old show-jumping stallion presented with severe lameness, swelling, and pain on palpation of the left metacarpophalangeal joint (MCj). Diagnostic imaging revealed full and partial-thickness articular defects over the lateral condyle of the third metacarpus (MC3) and the dorsolateral aspect of the first phalanx (P1). After the lesion's arthroscopic curettage, the patient was subjected to an innovative regenerative treatment consisting of two intra-articular injections of equine synovial membrane mesenchymal stem/stromal cells (eSM-MSCs) combined with umbilical cord mesenchymal stem/stromal cells conditioned medium (UC-MSC CM), 15 days apart. A 12-week rehabilitation program was accomplished, and lameness, pain, and joint effusion were remarkably reduced; however, magnetic resonance imaging (MRI) and computed tomography (CT) scan presented incomplete healing of the MC3's lesion, prompting a second round of treatment. Subsequently, the horse achieved clinical soundness and returned to a higher level of athletic performance, and imaging exams revealed the absence of lesions at P1, fulfillment of the osteochondral lesion, and cartilage-like tissue formation at MC3's lesion site. The positive outcomes suggest the effectiveness of this combination for treating full and partial cartilage defects in horses. Multipotent mesenchymal stem/stromal cells (MSCs) and their bioactive factors compose a novel therapeutic approach for tissue regeneration and organ function restoration with anti-inflammatory and pro-regenerative impact through paracrine mechanisms.

5.
Biomark Res ; 12(1): 35, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515166

RESUMEN

Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.

6.
Methods Mol Biol ; 2783: 25-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478224

RESUMEN

Perivascular cells represent an in vivo counterpart of mesenchymal stromal/stem cells that populate the outer layer of blood vessels. Pericytes in capillaries and microvessels and adventitial cells of large arteries and veins give rise to stem/progenitor cells when isolated and cultured in vitro. These cells have been considered candidate cell types for cell therapy. Adipose tissue, being highly vascularized, dispensable, and easily accessed, is a viable option to obtain perivascular cells for use in research and in clinical trials. Here, we describe our established protocol to extract perivascular cells from human fat through fluorescence-activated cell sorting, which allows for the isolation of defined populations of progenitor cells with high reproducibility.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Citometría de Flujo , Reproducibilidad de los Resultados , Células Madre Mesenquimatosas/metabolismo , Pericitos/metabolismo , Tejido Adiposo , Diferenciación Celular
7.
Methods Mol Biol ; 2783: 137-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478230

RESUMEN

Cats are among the most popular household pets. However, compared to other species, there is little information specific to feline adult mesenchymal stromal/stem cells. Despite the phylogenetic distance between domesticated cats, Felis silvestris catus, and humans, they share some similar health challenges like kidney disease, asthma, and diabetes. Investigative efforts have been focused on adult adipose-derived stromal/stem cell (ASC) therapies to address feline illnesses, including de novo pancreatic tissue generation for diabetes treatment. Given the relatively small size of domestic cats, optimized cell isolation from small quantities of adipose tissue is important in the development of feline ASC-based therapies. Additionally, there are unique features of feline ASC culture conditions and characterization. This chapter contains a few of the novel aspects of feline ASC isolation, culture, preservation, and differentiation.


Asunto(s)
Tejido Adiposo , Diabetes Mellitus , Humanos , Adulto , Gatos , Animales , Filogenia , Diferenciación Celular , Separación Celular/veterinaria
8.
Stem Cells Transl Med ; 13(4): 346-361, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381583

RESUMEN

BACKGROUND: In preclinical studies, mesenchymal stromal cells (MSCs), including umbilical cord-derived MSCs (UC-MSCs), demonstrate the ability to modulate numerous pathophysiological processes related to sepsis; however, a systematic synthesis of the literature is needed to assess the efficacy of UC-MSCs for treating sepsis. OBJECTIVE: To examine the effects of UC-MSCs on overall mortality (primary outcome) as well as on organ dysfunction, coagulopathy, endothelial permeability, pathogen clearance, and systemic inflammation (secondary outcomes) at prespecified time intervals in preclinical models of sepsis. METHODS: A systematic search was conducted on Embase, Ovid MEDLINE, and Web of Science up to June 20, 2023. Preclinical controlled studies using in vivo sepsis models with systemic UC-MSC administration were included. Meta-analyses were conducted and expressed as odds ratios (OR) and ratios of the weighted means with 95% CI for categorical and continuous data, respectively. Risk of bias was assessed with the SYRCLE tool. RESULTS: Twenty-six studies (34 experiments, n = 1258 animals) were included in this review. Overall mortality was significantly reduced with UC-MSC treatment as compared to controls (OR: 0.26, 95% CI: 0.18-0.36). At various prespecified time intervals, UC-MSCs reduced surrogate measures of organ dysfunction related to the kidney, liver, and lung; reduced coagulopathy and endothelial permeability; and enhanced pathogen clearance from multiple sites. UC-MSCs also modulated systemic inflammatory mediators. No studies were rated as low risk across all SYCLE domains. CONCLUSIONS: These results demonstrate the efficacy of UC-MSC treatment in preclinical sepsis models and highlight their potential as a therapeutic intervention for septic shock.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Sepsis , Cordón Umbilical , Sepsis/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Humanos , Animales , Células Madre Mesenquimatosas/citología , Modelos Animales de Enfermedad
10.
Cell Immunol ; 393-394: 104771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37783061

RESUMEN

Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.


Asunto(s)
Artritis Reumatoide , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Linfocitos T/metabolismo , Macrófagos/metabolismo , Células Asesinas Naturales/metabolismo
11.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263619

RESUMEN

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo , Análisis de Expresión Génica de una Sola Célula , Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología
12.
World J Stem Cells ; 15(5): 400-420, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37342218

RESUMEN

Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.

13.
Stem Cell Res Ther ; 14(1): 66, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024925

RESUMEN

Mesenchymal stromal/stem cells (MSCs) are widely utilized in cell therapy because of their robust immunomodulatory and regenerative properties. Their paracrine activity is one of the most important features that contribute to their efficacy. Recently, it has been demonstrated that the production of various factors via extracellular vesicles, especially exosomes, governs the principal efficacy of MSCs after infusion in experimental models. Compared to MSCs themselves, MSC-derived exosomes (MSC-Exos) have provided significant advantages by efficiently decreasing unfavorable adverse effects, such as infusion-related toxicities. MSC-Exos is becoming a promising cell-free therapeutic tool and an increasing number of clinical studies started to assess the therapeutic effect of MSC-Exos in different diseases. In this review, we summarized the ongoing and completed clinical studies using MSC-Exos for immunomodulation, regenerative medicine, gene delivery, and beyond. Additionally, we summarized MSC-Exos production methods utilized in these studies with an emphasis on MSCs source, MSC-Exos isolation methods, characterization, dosage, and route of administration. Lastly, we discussed the current challenges and future directions of exosome utilization in different clinical studies as a novel therapeutic strategy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Tratamiento Basado en Trasplante de Células y Tejidos , Inmunomodulación
14.
Stem Cells ; 41(5): 505-519, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36945068

RESUMEN

For adipose stromal/stem cell (ASCs)-based immunomodulatory therapies, it is important to study how donor characteristics, such as obesity and type 2 diabetes (T2D), influence ASCs efficacy. Here, ASCs were obtained from 2 groups, donors with T2D and obesity (dASCs) or nondiabetic donors with normal-weight (ndASCs), and then cultured with anti-CD3/CD28-stimulated allogeneic CD4 T cells. ASCs were studied for the expression of the immunomodulators CD54, CD274, and indoleamine 2, 3 dioxygenase 1 (IDO) in inflammatory conditions. CD4 T cells cultured alone or in cocultures were assessed to evaluate proliferation, activation marker surface expression, apoptosis, the regulatory T cells (Tregs; CD4+ CD25high FOXP3+) frequency, and intracellular cytokine expression using flow cytometry. Modulation of T-cell subset cytokines was explored via ELISA. In inflammatory conditions, the expression of CD54, CD274, and IDO was significantly upregulated in ASCs, with no significant differences between ndASCs and dASCs. dASCs retained the potential to significantly suppress CD4 T-cell proliferation, with a slightly weaker inhibitory effect than ndASCs, which was associated with significantly reduced abilities to decrease IL-2 production and increase IL-8 levels in cocultures. Such attenuated potentials were significantly correlated with increasing body mass index. dASCs and ndASCs comparably reduced CD4 T-cell viability, HLA-DR expression, and interferon-gamma production and conversely increased CD69 expression, the Tregs percentage, and IL-17A production. Considerable amounts of the immunomodulators prostaglandin E2 (PGE2) and IL-6 were detected in the conditioned medium of cocultures. These findings suggest that ASCs obtained from donors with T2D and obesity are receptive to the inflammatory environment and able to modulate CD4 T cells accordingly.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Mesenquimatosas , Humanos , Tejido Adiposo/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Madre Mesenquimatosas/metabolismo , Citocinas/metabolismo , Inmunomodulación , Obesidad/metabolismo , Proliferación Celular
15.
Biomaterials ; 294: 121971, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634491

RESUMEN

In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines. This inflammatory secretome modulation limits the application potential of unmodified IVT-mRNA for cell therapy manufacturing, pro-angiogenic therapy and regenerative medicine. To uncouple immunogenicity from the protein expression functionality, we immuno-engineered IVT-mRNA with different chemically modified ribonucleotides. 5-Methoxy-uridine-modification of IVT-mRNA rescued the endogenous secretome pattern of transfected cells and prolonged secretion of IVT-mRNA-encoded VEGF. We found that high secretion of IVT-mRNA-encoded protein further depends on optimized cell adhesion. Cell encapsulation in a collagen-hyaluronic acid hydrogel increased secretion of IVT-mRNA-encoded VEGF and augmented the endogenous secretion of supporting pro-angiogenic mediators, such as HGF. Integrating minimally immunogenic mRNA technology with predesigned matrix-derived cues allows for the synergistic combination of multiple dimensions of cell manipulation and opens routes for biomaterial-based delivery of mRNA-engineered cell products. Such multimodal systems could present a more biologically relevant way to therapeutically address complex multifactorial processes such as tissue ischemia, angiogenesis, and regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secretoma , Medicina Regenerativa/métodos
16.
Front Vet Sci ; 10: 1293199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162475

RESUMEN

Introduction: Equine recurrent uveitis (ERU), an immune mediated disease characterized by repeated episodes of intra-ocular inflammation, affects 25% of horses in the USA and is the most common cause of glaucoma, cataracts, and blindness. Mesenchymal stromal cells (MSCs) have immunomodulatory properties, which are upregulated by preconditioning with toll-like receptor agonists. The objective was to evaluate safety and migration of TLR-3 agonist polyinosinic, polycytidylic acid (pIC)-activated MSCs injected subconjunctivally in healthy horses prior to clinical application in horses with ERU. We hypothesized that activated allogeneic MSCs injected subconjunctivally would not induce ocular or systemic inflammation and would remain in the conjunctiva for >14 days. Methods: Bulbar subconjunctiva of two horses was injected with 10 × 106 pIC-activated (10 µg/mL, 2 h) GFP-labeled MSCs from one donor three times at two-week intervals. Vehicle (saline) control was injected in the contralateral conjunctiva. Horses received physical and ophthalmic exams [slit lamp biomicroscopy, rebound tonometry, fundic examination, and semiquantitative preclinical ocular toxicology scoring (SPOTS)] every 1-3 days. Systemic inflammation was assessed via CBC, fibrinogen, and serum amyloid A (SAA). Horses were euthanized 14 days following final injection. Full necropsy and histopathology were performed to examine ocular tissues and 36 systemic organs for MSC presence via IVIS Spectrum. Anti-GFP immunohistochemistry was performed on ocular tissues. Results: No change in physical examinations was noted. Bloodwork revealed fibrinogen 100-300 mg/dL (ref 100-400) and SAA 0-25 µg/mL (ref 0-20). Ocular effects of the subjconjucntival injection were similar between MSC and control eyes on SPOTS grading system, with conjunctival hypermia, chemosis and ocular discharge noted bilaterally, which improved without intervention within 14 days. All other ocular parameters were unaffected throughout the study. Necropsy and histopathology revealed no evidence of systemic inflammation. Ocular histopathology was similar between MSC and control eyes. Fluorescent imaging analysis did not locate MSCs. Immunohistochemistry did not identify intact MSCs in the conjunctiva, but GFP-labeled cellular components were present in conjunctival phagocytic cells. Discussion: Allogeneic pIC-activated conjunctival MSC injections were well tolerated. GFP-labeled tracking identified MSC components phagocytosed by immune cells subconjunctivally. This preliminary safety and tracking information is critical towards advancing immune conditioned cellular therapies to clinical trials in horses.

17.
Aging Dis ; 13(6): 1919-1938, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36465184

RESUMEN

Mesenchymal stromal/stem cells (MSCs) have been considered an attractive source of cytotherapy due to their promising effects on treating various diseases. Allogeneic MSCs (allo-MSCs) are extensively used in clinical trials due to their convenient preparation and credible performance. Traditionally, allo-MSCs are considered immunoprivileged with minimal immunogenicity and potent immunomodulatory capacity. However, growing evidence has suggested that allo-MSCs also induce immune response and cause rejection after transplantation, but the underlying cellular and molecular mechanisms remain to be elucidated. Here, we demonstrated that allografted MSCs upregulated MHC-II upon stimulation of IFN-γ in hepatic inflammatory environment by using mouse model of CCl4-induced liver injury. MHC-II upregulation enhanced the immunogenicity of allo-MSCs, leading to the activation of alloreactive T cells and rejection of allo-MSCs. However, MHC-II deficiency impaired the allogenic reactivity, thereby rescuing the loss of allo-MSCs. Mechanistically, CD4+ cytotoxic T lymphocytes (CTLs), rather than CD8+ CTLs, acted as the major effector for allo-MSC rejection. Under liver injury condition, the transplanted allo-MSCs upregulated CD80 and PD-L1, and CD8+ CTLs highly expressed CTLA-4 and PD-1, thereby inducing immune tolerance of CD8+ T cells to allo-MSCs. On the contrary, CD4+ CTLs minimally expressed CTLA-4 and PD-1; thus, they remain cytotoxic to allo-MSCs. Consequently, transplantation of MHC-II-deficient allo-MSCs substantially promoted their therapeutic effects in treating liver injury. This study revealed a novel mechanism of MSC allograft rejection mediated by CD4+ CTLs in injured liver, which provided new strategies for improving clinical performance of allo-MSCs in benefiting hepatic injury repair.

18.
Heliyon ; 8(10): e10739, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36247177

RESUMEN

Tissue-residing mesenchymal stromal/stem cells (MSCs) have multipotent characteristics that are important for adult tissue homeostasis and tissue regeneration after injury. We previously reported that fibroblastic cells isolated from the synovial membrane in the knee joint give rise to cells with MSC characteristics in a two-dimensional culture. To explore the molecular mechanisms underlying these hyperplastic properties, we performed time-course surface antigen expression analyses during in vitro culture. Cells freshly isolated from the synovial membrane rarely contained cells that met the criteria (CD45-CD73+CD90+CD105+). However, the number of cells expressing MSC antigens increased on day 7. Flow cytometric analysis indicated that cells positive for either CD73 or CD90 were specifically derived from cells positive for CD44. CD44 expression was upregulated during culture, and CD105+ cells were specifically derived from the CD44 highly expressing cells. In addition, depletion of hyaluronic acid (HA), a major ligand of CD44, decreased the number of CD105+ cells, whereas supplementation with HA increased their number. These data suggest that intracellular signals activated by CD44 play an important role in the formation and/or maintenance of MSCs.

19.
Stem Cell Res Ther ; 13(1): 318, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842731

RESUMEN

BACKGROUND: Notch signaling plays important roles in regulating innate immunity. However, little is known about the role of Notch in mesenchymal stromal/stem cell (MSC)-mediated immunomodulation during liver inflammatory response. METHODS: Notch activation in human umbilical cord-derived MSCs was performed by a tissue culture plate coated with Notch ligand, recombinant human Jagged1 (JAG1). Mice were given intravenous injection of Notch-activated MSCs after acetaminophen (APAP)-induced acute liver injury. Liver tissues were collected and analyzed by histology and immunohistochemistry. RESULTS: MSC administration reduced APAP-induced hepatocellular damage, as manifested by decreased serum ALT levels, intrahepatic macrophage/neutrophil infiltration, hepatocellular apoptosis and proinflammatory mediators. The anti-inflammatory activity and therapeutic effects of MSCs were greatly enhanced by Notch activation via its ligand JAG1. However, Notch2 disruption in MSCs markedly diminished the protective effect of MSCs against APAP-induced acute liver injury, even in the presence of JAG1 pretreatment. Strikingly, Notch-activated MSCs promoted AMP-activated protein kinase (AMPKα) phosphorylation, increased the sirtuins 1 (SIRT1) deacetylase expression, but downregulated spliced X-box-binding protein 1 (XBP1s) expression and consequently reduced NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation. Furthermore, SIRT1 disruption or XBP1s overexpression in macrophages exacerbated APAP-triggered liver inflammation and augmented NLRP3/caspase-1 activity in MSC-administrated mice. Mechanistic studies further demonstrated that JAG1-pretreated MSCs activated Notch2/COX2/PGE2 signaling, which in turn induced macrophage AMPK/SIRT1 activation, leading to XBP1s deacetylation and inhibition of NLRP3 activity. CONCLUSIONS: Activation of Notch2 is required for the ability of MSCs to reduce the severity of APAP-induced liver damage in mice. Our findings underscore a novel molecular insights into MSCs-mediated immunomodulation by activating Notch2/COX2/AMPK/SIRT1 pathway and thus provide a new strategy for the treatment of liver inflammatory diseases.


Asunto(s)
Acetaminofén , Células Madre Mesenquimatosas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetaminofén/toxicidad , Animales , Ciclooxigenasa 2 , Humanos , Ligandos , Hígado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Sirtuina 1/genética , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA