Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Res ; 260: 119634, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029729

RESUMEN

The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.


Asunto(s)
Pollos , Fermentación , Estiércol , Odorantes , Compuestos de Sulfhidrilo , Animales , Odorantes/análisis , Compuestos de Sulfhidrilo/metabolismo , Reactores Biológicos
2.
Environ Sci Pollut Res Int ; 31(32): 44669-44690, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963632

RESUMEN

Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.


Asunto(s)
Gases , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Administración de Residuos/métodos , Contaminantes Atmosféricos
3.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834271

RESUMEN

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Colorantes Fluorescentes , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Ratones , Humanos , Rayos Infrarrojos , Imagen Óptica , Glutatión/análisis , Compuestos de Sulfhidrilo/análisis , Compuestos de Sulfhidrilo/química , Cisteína/análisis , Rodaminas/química , Rodaminas/toxicidad , Homocisteína/análisis , Luminiscencia
4.
Molecules ; 29(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338412

RESUMEN

On the basis of density functional theory (DFT) at the B3LYP/cc-pVQZ level with the C-PCM solvation model, a comparative analysis of the reactivity of the garlic metabolites 2-propenesulfenic acid (PSA) and allyl mercaptan (AM, 2-propene-1-thiol) was performed. In particular, the thermodynamic descriptors (BDE, PA, ETE, AIP, PDE, and Gacidity) and global descriptors of chemical activity (ionization potential (IP), electron affinity (EA), chemical potential (µ), absolute electronegativity (χ), molecular hardness (η) and softness (S), electrophilicity index (ω), electro-donating (ω-) and electro-accepting (ω+) powers, and Ra and Rd indexes) were determined. The calculations revealed that PSA is more reactive than AM, but the latter may play a crucial role in the deactivation of free radicals due to its greater chemical stability and longer lifetime. The presence of a double bond in AM enables its polymerization, preserving the antiradical activity of the S-H group. This activity can be amplified by aryl-substituent-containing hydroxyl groups. The results of the calculations for the simplest phenol-AM derivative indicate that both the O-H and S-H moieties show greater antiradical activity in a vacuum and aqueous medium than the parent molecules. The results obtained prove that AM and its derivatives can be used not only as flavoring food additives but also as potent radical scavengers, protecting food, supplements, cosmetics, and drug ingredients from physicochemical decomposition caused by exogenous radicals.

5.
mSystems ; 9(2): e0076423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289043

RESUMEN

The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.


Asunto(s)
Halitosis , Periodontitis , Humanos , Fusobacterium nucleatum/genética , Halitosis/microbiología , Compuestos de Sulfhidrilo/metabolismo , Bacterias , Streptococcus gordonii , Ornitina/metabolismo , Metionina/metabolismo , Poliaminas/metabolismo
6.
Clin Oral Investig ; 28(1): 102, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233664

RESUMEN

OBJECTIVES: This study aimed to identify the levels of halitosis in patients with Medication-related osteonecrosis of the jaw (MRONJ) and osteoporosis and to suggest a new MRONJ screening method using halitosis measurement. MATERIALS AND METHODS: From October 2019 to April 2023, participants aged 19 years or older without periodontal disease were selected. Seventy-five participants, 25 in each group, were divided into an MRONJ group, an osteoporosis group without MRONJ, and a control group without osteoporosis and not taking osteoporosis drugs or antibiotics. Each participant underwent halitosis assessment twice using an exhaled breath analyzer to measure halitosis twice by blowing a straw for 1 min. Measured concentrations of hydrogen, hydrogen sulfide, and methyl mercaptan were compared between groups. RESULTS: Data from 22 patients in the MRONJ group, 25 in the osteoporosis group, and 25 in the control group were analyzed. The concentrations of hydrogen sulfide and methyl mercaptan were significantly higher in the MRONJ group than in the other groups, but the concentrations of hydrogen did not differ between the groups. When comparing the concentrations of hydrogen sulfide and methyl mercaptan in osteoporosis patients and solid cancer patients in the MRONJ group, there was a significant difference in hydrogen sulfide concentration, but there was no significant difference in methyl mercaptan. CONCLUSIONS: Quantifying the level of halitosis can be used to screen for MRONJ in patients taking bisphosphonates, such as patients with osteoporosis, prostate cancer, and breast cancer. CLINICAL RELEVANCE: MRONJ is accompanied by bad breath, and the concentrations of hydrogen sulfide and methyl mercaptan are associated with MRONJ.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Halitosis , Sulfuro de Hidrógeno , Osteonecrosis , Osteoporosis , Masculino , Humanos , Halitosis/diagnóstico , Difosfonatos , Compuestos de Sulfhidrilo , Hidrógeno , Osteonecrosis de los Maxilares Asociada a Difosfonatos/diagnóstico
7.
Environ Sci Pollut Res Int ; 31(5): 7959-7976, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175505

RESUMEN

Sulfur-containing gases are main sources of landfill odors, which has become a big issue for pollution to environment and human health. Biocover is promising for treating landfill odors, with advantages of durability and environmental friendliness. In this study, charcoal sludge compost was utilized as the main effective component of a novel alternative landfill cover and the in situ control of sulfur-containing odors from municipal solid waste landfilling process was simulated under nine different operating conditions. Results showed that five sulfur-containing odors (hydrogen sulfide, H2S; methyl mercaptan, CH3SH; dimethyl sulfide, CH3SCH3; ethylmercaptan, CH3CH2SH; carbon disulfide, CS2) were monitored and removed by the biocover, with the highest removal efficiencies of 77.18% for H2S, 87.36% for CH3SH, and 92.19% for CH3SCH3 in reactor 8#, and 95.94% for CH3CH2SH and 94.44% for CS2 in reactor 3#. The orthogonal experiment showed that the factors influencing the removal efficiencies of sulfur-containing odors were ranked from high to low as follows: temperature > weight ratio > humidity content. The combination of parameters of 20% weight ratio, 25°C temperature, and 30% water content was more recommended based on the consideration of the removal efficiencies and economic benefits. The mechanisms of sulfur conversion inside biocover were analyzed. Most organic sulfur was firstly degraded to reduced sulfides or element sulfur, and then oxidized to sulfate which could be stable in the layer as the final state. In this process, sulfur-oxidizing bacteria play a great role, and the distribution of them in reactor 1#, 5#, and 8# was specifically monitored. Bradyrhizobiaceae and Rhodospirillaceae were the dominant species which can utilize sulfide as substance to produce sulfate and element sulfur, respectively. Based on the results of OUTs, the biodiversity of these sulfur-oxidizing bacteria, these microorganisms, was demonstrated to be affected by the different parameters. These results indicate that the novel alternative landfill cover modified with bamboo charcoal compost is effective in removing sulfur odors from landfills. Meanwhile, the findings have direct implications for addressing landfill odor problems through parameter adjustment.


Asunto(s)
Sulfuro de Hidrógeno , Odorantes , Humanos , Carbón Orgánico/metabolismo , Sulfuro de Hidrógeno/metabolismo , Azufre/metabolismo , Instalaciones de Eliminación de Residuos , Óxidos de Azufre , Bacterias/metabolismo , Sulfatos/metabolismo
8.
Exp Gerontol ; 183: 112308, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821052

RESUMEN

In this study, 50 SD adult male mice were used to create an Alzheimer's disease model. The mice's learning and memory abilities were evaluated using an eight-arm radial maze experiment, and changes in body weight and food intake were noted. This helped to better validate the improvement of Alzheimer's disease caused by pine nut peptide-zinc chelate (Korean pine). For a more thorough investigation, mice's brains were dissected, Endogenous mercaptan antioxidants (enzymes), which are markers of brain tissue, were assessed, and mouse gut flora was analyzed. The findings demonstrated that pine nut peptide-zinc chelate (Korean pine) can improve learning and memory, stop brain aging and damage, and control gut flora in mice. It may exert its effects by ameliorating decreased AChE levels and increased ChAT levels in the central cholinergic system, endogenous thiol antioxidants (enzymes) in the cerebral cortex, and by controlling the bacterial flora in the gut.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Nueces , Antioxidantes/farmacología , Péptidos , República de Corea , Zinc/farmacología , Modelos Animales de Enfermedad
9.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764631

RESUMEN

The cooperative transition of sulfur-containing pollutants of H2S/CO/H2 to the high-value chemical methyl mercaptan (CH3SH) is catalyzed by Mo-based catalysts and has good application prospects. Herein, a series of Al2O3-supported molybdenum carbide catalysts with K doping (denoted herein as K-Mo2C/Al2O3) are fabricated by the impregnation method, with the carbonization process occurring under different atmospheres and different temperatures between 400 and 600 °C. The CH4-K-Mo2C/Al2O3 catalyst carbonized by CH4/H2 at 500 °C displays unprecedented performance in the synthesis of CH3SH from CO/H2S/H2, with 66.1% selectivity and a 0.2990 g·gcat-1·h-1 formation rate of CH3SH at 325 °C. H2 temperature-programmed reduction, temperature-programmed desorption, X-ray diffraction and Raman and BET analyses reveal that the CH4-K-Mo2C/Al2O3 catalyst contains more Mo coordinatively unsaturated surface sites that are responsible for promoting the adsorption of reactants and the desorption of intermediate products, thereby improving the selectivity towards and production of CH3SH. This study systematically investigates the effects of catalyst carbonization and passivation conditions on catalyst activity, conclusively demonstrating that Mo2C-based catalyst systems can be highly selective for producing CH3SH from CO/H2S/H2.

10.
Antioxidants (Basel) ; 12(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37760083

RESUMEN

In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (H2S), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis. Gut bacteria are the major exogenous source of exposure to this foul-smelling toxic gas, with methanethiol-producing strains such as Fusobacterium nucleatum highly abundant in the gut microbiome of colorectal carcinoma (CRC) patients. Physiologically, methanethiol becomes rapidly degraded through the methanethiol oxidase (MTO) activity of selenium-binding protein 1 (SELENBP1). However, SELENBP1, which is considered a tumor suppressor, is often downregulated in tumor tissues, and this has been epidemiologically linked to poor clinical outcomes. In addition to impaired removal, an increase in methanethiol levels may derive from non-enzymatic reactions, such as a Maillard reaction between glucose and methionine, two metabolites enriched in cancer cells. High methionine concentrations in cancer cells may also result in enzymatic methanethiol production in mitochondria. Moreover, enzymatic endogenous methanethiol production may occur through methyltransferase-like protein 7B (METTL7B), which is present at elevated levels in some cancers, including CRC and hepatocellular carcinoma (HCC). In conclusion, methanethiol contributes to the scent of cancer as part of the cancer-associated signature combination of volatile organic compounds (VOCs) that are increasingly being exploited for non-invasive early cancer diagnosis.

11.
Adv Mater ; 35(22): e2300945, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36912205

RESUMEN

Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.

12.
J Hazard Mater ; 442: 130029, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36166909

RESUMEN

Organic sulfur gases (COS, CS2 and CH3SH) are widely present in reducing industrial off-gases, and these substances pose difficulties for the recovery of carbon monoxide and other gases. The reaction pathways and reaction mechanisms of organic sulfur on different catalyst surfaces have yet to be fully summarized. The literature shows that many factors, such as catalyst synthesis method, loaded metal composition, number of surface hydroxyl groups, number of acid-base sites and methods of surface modification, have important effects on the catalytic performance of metal catalysts. Therefore, this paper presents a comprehensive review of the research on the application of catalysts such as zeolites, metal oxides, carbon-based materials, and hydrotalcite-like derivatives in the field of organic sulfur removal. Future research prospects are summarized, more in situ characterization experiments and theoretical calculations are needed for the catalytic decomposition of methanethiol to analyze the coke generation pathways at the microscopic level, while the simultaneous removal of multiple organic sulfur gases needs to be focused on. Based on previous catalyst research, we propose possible innovations in catalyst design, desulfurization technology and organic sulfur resource utilization technology.

13.
Artículo en Japonés | WPRIM (Pacífico Occidental) | ID: wpr-1007151

RESUMEN

Mouthwash is used to support brushing because it is distributed throughout the oral cavity. In this study, we examined the efficacy of a mixture of three hot water extracts (from Hordeum vulgare L, Apocynum venetum L, and Brasenia schreberi J. F. Gmel) for the purpose of developing an effective mouthwash. The mixture suppressed enhanced tumor necrosis factor α and matrix metalloproteinase 3 gene expression by Porphyromonas gingivalis lipopolysaccharide stimulation in human gingival fibroblasts. Furthermore, human studies using a mouthwash containing the plant extracts (MW) improved gingival index and bleeding on probing in the gum, and reduced the concentration of methyl mercaptan, which causes bad breath, in the mouth. These findings suggest that continued use of MW has positive effects on gingival inflammation and halitosis, and is useful for maintaining oral health.

14.
Environ Monit Assess ; 195(1): 226, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562856

RESUMEN

Expanding industries and booming population have led to the increase in the installation of wastewater and sewer systems, even in close proximity to residential areas. Emissions from these installations particularly volatile organo-sulphur compounds (VOSCs) such as methyl mercaptan (CH3SH), ethyl mercaptan (C2H5SH), dimethyl sulphide (CH3SCH3) and carbon disulphide (CS2) are a nuisance to people even when present in small concentration. Strategies for removal involve addition of chemicals or other chemical processes which are generally expensive. Biofilters, on the other hand, consume large amount of energy and wash waters. Hence keeping commercialization in mind, it is important to develop a strategy which would be cost-effective and at the same time be effective to remove most of the odorous compounds present in these systems. In the present research work, granular activated carbons (GAC) are functionalized with alkali solution to improve the adsorption capacity. Liquid phase batch adsorption is performed with GAC and various functionalized activated carbons (FACs) with the help of raw sewage water from a local sewage water treatment plant. Concentration of odour was evaluated by two methods-olfactometry-based analysis for sensory measurement and GCMS-based analysis for analytical estimation of a specific odorous compound. The adsorption capacities of the functionalized GACs are higher primarily because of complex formation at the surface of modified GACs. Pseudo-second-order kinetic model agreed well with experimental results with the rate constant being 0.0191 mg/l min and 0.0153 mg/l min for methyl and ethyl mercaptan adsorption onto FAC-NH3. Boyd's film diffusion along with rate kinetic model supported that chemical adsorption forms the rate-limiting step. Response surface methodology (RSM) was used to optimize the removal of VOSCs with respect to different process parameters like adsorbent amount and time. The olfactometry removal of overall odour was also optimized taking 6 factors in the Box Behnken design. Variance of analysis results indicated that all the models displayed considerable goodness of fit with R2 values close to 1. Methyl mercaptan turned out to be the highest contributor to the overall odour as confirmed both from experimental and optimization study. The optimized olfactometry odour removal (77.4%) along with CH3SH removal (80.34%), C2H5SH removal (59.16%), CH3SCH3 removal (63.21%) and CS2 removal (71.95%) was found at optimum process conditions, with amount of adsorbent of 10.29 g, adsorption time of 2.92 h. This result indicates that methyl mercaptan (CH3SH) is the highest odour contributing component out of the studied VOSCs. The results show promising potential for the use of activated carbon as an adsorbent for removal of odorous compounds from STPs.


Asunto(s)
Compuestos de Azufre , Contaminantes Químicos del Agua , Humanos , Compuestos de Azufre/análisis , Aguas Residuales , Aguas del Alcantarillado/análisis , Odorantes/análisis , Porosidad , Monitoreo del Ambiente , Compuestos de Sulfhidrilo/química , Cinética , Adsorción , Contaminantes Químicos del Agua/análisis
15.
Chemosphere ; 305: 135511, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35777537

RESUMEN

Methyl mercaptan (MM) is a typical malodorous gas and low-concentration MM makes human uncomfortable. Adsorption is applied in industry to remove MM. However, adsorptive-site agglomeration results in that adsorbent is not fully utilized. In this work, pore size and unsaturated-site amount of Cu-based metal-organic frameworks (MOFs) were regulated by using different ligands to increase adsorptive-site accessibility for MM. As a result, when Cu2+ sites were imbedded in MOFs network, these sites were inaccessible for MM; when Cu2+ sites were occupied by none-network organics, these sites were accessible for MM after simple activation; when Cu2+ sites were occupied by water, these sites were the most effective for MM removal among above site species. Furthermore, with the increase of bonding sites in ligands, channel pore size of MOFs was increased. Both pore size and unsaturated-site amount were important to MM removal. When above MOFs were used in purification of ultra-low-concentration MM, the regulated MOFs with a big pore size (11 and 5 Å) and water-occupied sites showed a best removal capacity of 160.3 mg g-1. The main result of this work is in favor of understanding structure-efficiency relationship in MOFs. This work also helps to develop effective adsorbents for ultra-low-concentration pollutants.


Asunto(s)
Estructuras Metalorgánicas , Purificación del Agua , Adsorción , Humanos , Compuestos de Sulfhidrilo , Agua , Purificación del Agua/métodos
16.
Adv Sci (Weinh) ; 9(27): e2202442, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35839470

RESUMEN

NiO nanosheets are synthesized in situ on gas sensor chips using a facile solvothermal method. These NiO nanosheets are then used as gas sensors to analyze allyl mercaptan (AM) gas, an exhaled biomarker of psychological stress. Additionally, MnO2 nanosheets are synthesized onto the surfaces of the NiO nanosheets to enhance the gas-sensing performance. The gas-sensing response of the NiO nanosheet sensor is higher than that of the MnO2 @NiO nanosheet sensor. The response value can reach 56.69, when the NiO nanosheet sensor detects 40 ppm AM gas. Interestingly, a faster response time (115 s) is obtained when the MnO2 @NiO nanosheet sensor is exposed to 40 ppm of AM gas. Moreover, the selectivity toward AM gas is about 17-37 times greater than those toward confounders. The mechanism of gas sensing and the factors contributing to the enhance gas response of the NiO and MnO2 @NiO nanosheets are discussed. The products of AM gas oxidized by the gas sensor are identified by gas chromatography-mass spectrometry (GC/MS). AM gas detection is an unprecedented application for semiconductor metal oxides. From a broader perspective, the developed sensors represent a new platform for the identification and monitoring of gases released by humans under psychological stress, which is increasing in modern life.


Asunto(s)
Compuestos de Manganeso , Nanoestructuras , Gases/análisis , Humanos , Compuestos de Manganeso/química , Nanoestructuras/química , Óxidos/química , Estrés Psicológico , Compuestos de Sulfhidrilo
17.
Environ Sci Pollut Res Int ; 29(50): 75417-75430, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35653023

RESUMEN

Ethyl mercaptans which commonly exist in natural gas need to be removed due to their toxic, odorous, and corrosive properties. Herein, a novel Fe2O3-modified HNbMoO6 nanosheet catalyst (Fe2O3@e-HNbMoO6) was prepared by an exfoliation-impregnation method for the ethyl mercaptans removal. In the heterojunction catalyst, e-HNbMoO6 can be excited by visible light to generate the photogenic charge and has certain adsorption property for ethyl mercaptan with hydrogen bonding (Nb-OH or Mo-OH as the hydrogen bonding donor); Fe2O3 plays the role of accelerating photogenerated electrons and holes, and enhancing the adsorption of ethyl mercaptan with another hydrogen bonding (Fe-OH as the hydrogen bonding donor and receptor). Results showed that the adsorption capacity of Fe2O3@e-HNbMoO6 is 69.9 µmol/g for ethyl mercaptan. In addition, the photocatalytic conversion efficiency of ethyl mercaptan to diethyl disulfide is nearly 100% and it is higher than that of the other Nb-Mo based photocatalysts, such as LiNbMoO6, Fe1/3NbMoO6, Ce1/3NbMoO6, TiO2-HNbMoO6, e-HNbMoO6, CeO2@e-HNbMoO6, and Ag2O@e-HNbMoO6. Under the experimental conditions, the photocatalytic conversion efficiency is greater than the adsorption efficiency over Fe2O3@e-HNbMoO6, and there is no ethyl mercaptan output in the process of adsorption and photocatalytic conversion. Fe2O3@e-HNbMoO6 heterojunction catalyst has practical value and reference significance for purifying methane gas and enhancing photocatalytic conversion of ethyl mercaptan.


Asunto(s)
Cáusticos , Disulfuros , Adsorción , Metano , Gas Natural , Compuestos de Sulfhidrilo
18.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630946

RESUMEN

In this study, an silver (Ag) plating with micro/nano-dendrite structures is prepared on the 304 stainless steel (SS304) surface by potentiostatic deposition (Ag/SS304). After being modified by n-dodecyl mercaptan (NDM) with the low surface energy, the obtained sample (NDM@Ag/SS304) exhibits stable superhydrophobicity and excellent hot-water repellency. The surface morphology and composition of NDM@Ag/SS304 are analyzed by scanning electron microscope (SEM), X-ray spectrometer (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS) characterization. The electrochemical measurements, tests of water contact angle (WCA), and interfacial contact resistance (ICR) are employed to systematically study the performance of the NDM@Ag/SS304 in the simulated cathode environment of proton exchange membrane fuel cell (PEMFC). The results show that the NDM@Ag/SS304 has high corrosion potential (~0.25 V) and low corrosion current density (~4.04 µA/cm2); after potentiostatic polarization (0.6 V, 5 h), the NDM@Ag/SS304 also shows high superhydrophobic stability.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35548976

RESUMEN

Volatile organic sulfur compounds (VOSCs) serve not only as biomarkers for dental diseases such as halitosis but also as a tracer for monitoring air quality. Room-temperature selective detection and superior sensitivity against VOSCs at a sub-ppm level has remained a challenging task. Here, we propose a heterostructure-based design using a MoSe2/SnO2 composite for achieving sensitive and selective detection of ethyl mercaptan at room temperature. The composite was synthesized via a facile two-step method. A composite-based device has shown detection down to 1 ppm of ethyl mercaptan over a wider range of relative humidity (40-90%). Notably, the composite has shown adsorption selectivity toward ethyl mercaptan compared to hydrogen sulfide and other reducing or oxidizing analytes. Moreover, a density functional theory (DFT) study has been performed to understand the adsorption selectivity, charge transfer, and modification in the electronic properties after molecule adsorption on the host surface. Simulations predicted the lowest negative adsorption energy for ethyl mercaptan, implying the chemisorption (-142.029 kJ mol-1) process of adsorption. The device thus-obtained has also shown a stable response even at an extreme relative humidity level of 90%. The obtained results and superior signal-to-noise ratio indicate that a MoSe2/SnO2-based sensor may be a promising candidate for highly selective and sensitive detection of ethyl mercaptan even below 1 ppm.

20.
Clin Toxicol (Phila) ; 60(5): 615-622, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34989638

RESUMEN

CONTEXT: Methyl mercaptan (CH3SH) is a colorless, toxic gas with potential for occupational exposure and used as a weapon of mass destruction. Inhalation at high concentrations can result in dyspnea, hypoventilation, seizures, and death. No specific methyl mercaptan antidote exists, highlighting a critical need for such an agent. Here, we investigated the mechanism of CH3SH toxicity, and rescue from CH3SH poisoning by the vitamin B12 analog cobinamide, in mammalian cells. We also developed lethal CH3SH inhalation models in mice and rabbits, and tested the efficacy of intramuscular injection of cobinamide as a CH3SH antidote. RESULTS: We found that cobinamide binds to CH3SH (Kd = 84 µM), and improved growth of cells exposed to CH3SH. CH3SH reduced cellular oxygen consumption and intracellular ATP content and activated the stress protein c-Jun N-terminal kinase (JNK); cobinamide reversed these changes. A single intramuscular injection of cobinamide (20 mg/kg) rescued 6 of 6 mice exposed to a lethal dose of CH3SH gas, while all six saline-treated mice died (p = 0.0013). In rabbits exposed to CH3SH gas, 11 of 12 animals (92%) treated with two intramuscular injections of cobinamide (50 mg/kg each) survived, while only 2 of 12 animals (17%) treated with saline survived (p = 0.001). CONCLUSION: We conclude that cobinamide could potentially serve as a CH3SH antidote.


Asunto(s)
Antídotos , Cobamidas , Animales , Antídotos/uso terapéutico , Chlorocebus aethiops , Humanos , Ratones , Conejos , Compuestos de Sulfhidrilo , Vitamina B 12
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA