Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15549, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969745

RESUMEN

Interacting with objects in our environment requires determining their locations, often with respect to surrounding objects (i.e., allocentrically). According to the scene grammar framework, these usually small, local objects are movable within a scene and represent the lowest level of a scene's hierarchy. How do higher hierarchical levels of scene grammar influence allocentric coding for memory-guided actions? Here, we focused on the effect of large, immovable objects (anchors) on the encoding of local object positions. In a virtual reality study, participants (n = 30) viewed one of four possible scenes (two kitchens or two bathrooms), with two anchors connected by a shelf, onto which were presented three local objects (congruent with one anchor) (Encoding). The scene was re-presented (Test) with 1) local objects missing and 2) one of the anchors shifted (Shift) or not (No shift). Participants, then, saw a floating local object (target), which they grabbed and placed back on the shelf in its remembered position (Response). Eye-tracking data revealed that both local objects and anchors were fixated, with preference for local objects. Additionally, anchors guided allocentric coding of local objects, despite being task-irrelevant. Overall, anchors implicitly influence spatial coding of local object locations for memory-guided actions within naturalistic (virtual) environments.


Asunto(s)
Semántica , Realidad Virtual , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Percepción Espacial/fisiología , Memoria/fisiología
2.
Exp Brain Res ; 239(7): 2151-2158, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33977362

RESUMEN

It has been well established that an implicit motor response can be elicited by a target perturbation or a visual background motion during a reaching movement. Computational studies have suggested that the mechanism of this response is based on the error signal between the efference copy and the actual sensory feedback. If the implicit motor response is based on the efference copy, the motor command accuracy would affect the amount of the modulation of the motor response. Therefore, the purpose of the current study was to investigate the relationship between the implicit motor response and the motor planning accuracy. We used a memory-guided reaching task and a manual following response (MFR) which is induced by visual grating motion. Participants performed reaching movements toward a memorized-target location with a beep cue which was presented 0 or 3 s after the target disappeared (0-s delay and 3-s delay conditions). Leftward or rightward visual grating motion was applied 400 ms after the cue. In addition, an event-related potential (ERP) was recorded during the reaching task, which reflects the motor command accuracy. Our results showed that the N170 ERP amplitude in the parietal electrodes and the MFR amplitude were significantly larger for the 3-s delay condition than the 0-s delay condition. These results suggest that the motor planning accuracy affects the amount of the implicit visuomotor response. Furthermore, there was a significant within-subjects correlation between the MFR and the N170 amplitude, which could corroborate the relationship between the implicit motor response and the motor planning accuracy.


Asunto(s)
Movimiento , Desempeño Psicomotor , Potenciales Evocados , Retroalimentación Sensorial , Humanos , Tiempo de Reacción
3.
Neuron ; 104(6): 1126-1140.e6, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31706697

RESUMEN

The posterior parietal cortex (PPC) performs many functions, including decision making and movement control. It remains unknown which input and output pathways of PPC support different functions. We addressed this issue in mice, focusing on PPC neurons projecting to the dorsal striatum (PPC-STR) and the posterior secondary motor cortex (PPC-pM2). Projection-specific, retrograde labeling showed that PPC-STR and PPC-pM2 represent largely distinct subpopulations, with PPC-STR receiving stronger inputs from association areas and PPC-pM2 receiving stronger sensorimotor inputs. Two-photon calcium imaging during decision making revealed that the PPC-STR population encodes history-dependent choice bias more strongly than PPC-pM2 or general PPC populations. Furthermore, optogenetic inactivation of PPC-STR neurons or their terminals in STR decreased history-dependent bias, while inactivation of PPC-pM2 neurons altered movement kinematics. Therefore, PPC biases action selection through its STR projection while controlling movements through PPC-pM2 neurons. PPC may support multiple functions through parallel subpopulations, each with distinct input-output connectivity.


Asunto(s)
Toma de Decisiones/fisiología , Movimiento/fisiología , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Animales , Cuerpo Estriado/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA