Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653423

RESUMEN

Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.


Asunto(s)
Bacteriorodopsinas , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Estructura Secundaria de Proteína , Halobacterium salinarum/química , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Modelos Moleculares
2.
Trends Biochem Sci ; 49(6): 475-476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38538407

RESUMEN

Lipid nanodiscs are popular mimetics of biological membranes for determining membrane protein structures. However, a recent study revealed that the choice of nanodisc scaffold directly influenced the structure of an ion channel. This finding prompts us to be cautious and calls for improved membrane mimetics for structure determination.


Asunto(s)
Proteínas de la Membrana , Nanoestructuras , Membrana Dobles de Lípidos/química , Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Nanoestructuras/química , Conformación Proteica
3.
Elife ; 122024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381130

RESUMEN

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.


Asunto(s)
Proteínas de Transporte de Membrana , Cloruro de Sodio , Transporte Iónico , Cationes , Azúcares
4.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003610

RESUMEN

Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.


Asunto(s)
Fusión de Membrana , Proteínas Virales de Fusión , Humanos , Fusión de Membrana/fisiología , Dominios Proteicos , Proteínas Virales de Fusión/metabolismo , Péptidos , SARS-CoV-2/metabolismo
5.
J Biol Chem ; 299(8): 104945, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348560

RESUMEN

Human Flower (hFWE) isoforms hFWE1-4 are putative transmembrane (TM) proteins that reportedly mediate fitness comparisons during cell competition through extracellular display of their C-terminal tails. Isoform topology, subcellular localization, and duration of plasma membrane presentation are essential to this function. However, disagreement persists regarding the structure of orthologous fly and mouse FWEs, and experimental evidence for hFWE isoform subcellular localization or membrane structure is lacking. Here, we used AlphaFold2 and subsequent molecular dynamics-based structural predictions to construct epitope-tagged hFWE3 and hFWE4, the most abundant human isoforms, for experimental determination of their structure and internalization dynamics. We demonstrate that hFWE3 resides in the membrane of the endoplasmic reticulum (ER), while hFWE4 partially colocalizes with Rab4-, Rab5-, and Rab11-positive vesicles as well as with the plasma membrane. An array of imaging techniques revealed that hFWE4 positions both N- and C-terminal tails and a loop between second and third TM segments within the cytosol, while small (4-12aa) loops between the first and second and the third and fourth TM segments are either exposed to the extracellular space or within the lumen of cytoplasmic vesicles. Similarly, we found hFWE3 positions both N- and C-terminal tails in the cytosol, while a short loop between TM domains extends into the ER lumen. Finally, we demonstrate that hFWE4 exists only transiently at the cell surface and is rapidly internalized in an AP-2- and dynamin-1-dependent manner. Collectively, these data are consistent with a conserved role for hFWE4 in endocytic processes.


Asunto(s)
Retículo Endoplásmico , Modelos Moleculares , Humanos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endocitosis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Clatrina/metabolismo , Células HEK293
6.
Front Chem ; 11: 1113885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214482

RESUMEN

Virulence gene expression in the human pathogen, S. aureus is regulated by the agr (accessory gene regulator) quorum sensing (QS) system which is conserved in diverse Gram-positive bacteria. The agr QS signal molecule is an autoinducing peptide (AIP) generated via the initial processing of the AgrD pro-peptide by the transmembrane peptidase AgrB. Since structural information for AgrB and AgrBD interactions are lacking, we used homology modelling and molecular dynamics (MD) annealing to characterise the conformations of AgrB and AgrD in model membranes and in solution. These revealed a six helical transmembrane domain (6TMD) topology for AgrB. In solution, AgrD behaves as a disordered peptide, which binds N-terminally to membranes in the absence and in the presence of AgrB. In silico, membrane complexes of AgrD and dimeric AgrB show non-equivalent AgrB monomers responsible for initial binding and for processing, respectively. By exploiting split luciferase assays in Staphylococcus aureus, we provide experimental evidence that AgrB interacts directly with itself and with AgrD. We confirmed the in vitro formation of an AgrBD complex and AIP production after Western blotting using either membranes from Escherichia coli expressing AgrB or with purified AgrB and T7-tagged AgrD. AgrB and AgrD formed stable complexes in detergent micelles revealed using synchrotron radiation CD (SRCD) and Landau analysis consistent with the enhanced thermal stability of AgrB in the presence of AgrD. Conformational alteration of AgrB following provision of AgrD was observed by small angle X-ray scattering from proteodetergent micelles. An atomistic description of AgrB and AgrD has been obtained together with confirmation of the AgrB 6TMD membrane topology and existence of AgrBD molecular complexes in vitro and in vivo.

7.
Methods Mol Biol ; 2654: 51-59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37106175

RESUMEN

Molecular dynamics simulations of immune receptor and ligand proteins in their native membrane environment allow to determine the orientational and structural variability of the proteins and protein complexes. The simulations complement the static, "membrane-free" structural information obtained from cryo-EM structures of transmembrane proteins in detergent micelles or from crystal structures of extracellular protein domains. Here we describe how to set up and perform simulations of transmembrane receptors, ligands, and receptor-ligand complexes.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Inmunológicos , Ligandos , Membrana Celular/metabolismo , Dominios Proteicos , Receptores Inmunológicos/metabolismo
8.
Biochem J ; 480(5): 319-333, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920092

RESUMEN

My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.


Asunto(s)
Complejo I de Transporte de Electrón , Protones , Animales , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Modelos Moleculares , Oxidación-Reducción , Metabolismo Energético , Mamíferos/metabolismo
9.
Biomolecules ; 12(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36009016

RESUMEN

The structure of the transmembrane domain of the pH-activated bacterial potassium channel KcsA has been extensively characterized, yet little information is available on the structure of its cytosolic, functionally critical N- and C-termini. This study presents high-resolution magic angle spinning (HR-MAS) and fractional deuteration as tools to study these poorly resolved regions for proteoliposome-embedded KcsA. Using 1H-detected HR-MAS NMR, we show that the C-terminus transitions from a rigid structure to a more dynamic structure as the solution is rendered acidic. We make previously unreported assignments of residues in the C-terminus of lipid-embedded channels. These data agree with functional models of the C-terminus-stabilizing KcsA tetramers at a neutral pH with decreased stabilization effects at acidic pH. We present evidence that a C-terminal truncation mutation has a destabilizing effect on the KcsA selectivity filter. Finally, we show evidence of hydrolysis of lipids in proteoliposome samples during typical experimental timeframes.


Asunto(s)
Proteínas Bacterianas , Liposomas , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio/genética
10.
J Membr Biol ; 255(4-5): 375-383, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35972526

RESUMEN

Caveolins are an unusual family of membrane proteins whose primary biological function is to build small invaginated membrane structures at the surface of cells known as caveolae. Caveolins and caveolae regulate numerous signaling pathways, lipid homeostasis, intracellular transport, cell adhesion, and cell migration. They also serve as sensors and protect the plasma membrane from mechanical stress. Despite their many important functions, the molecular basis for how these 50-100 nm "little caves" are assembled and regulate cell physiology has perplexed researchers for 70 years. One major impediment to progress has been the lack of information about the structure of caveolin complexes that serve as building blocks for the assembly of caveolae. Excitingly, recent advances have finally begun to shed light on this long-standing question. In this review, we highlight new developments in our understanding of the structure of caveolin oligomers, including the landmark discovery of the molecular architecture of caveolin-1 complexes using cryo-electron microscopy.


Asunto(s)
Caveolas , Caveolina 1 , Caveolina 1/metabolismo , Microscopía por Crioelectrón , Caveolas/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Lípidos
11.
Protein Sci ; 31(7): e4364, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762724

RESUMEN

Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical ß-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.


Asunto(s)
Cobre , Proteínas de la Membrana , Transporte Biológico , Cobre/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo
12.
Methods Cell Biol ; 169: 115-141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35623699

RESUMEN

The numerous chemokines and their cognate G protein-coupled chemokine receptors on the surface of leukocytes form a complex signaling network, which regulates the immune response and also other key physiological processes. Currently only a very limited number of structures of chemokine•chemokine receptor complexes have been solved. More structures are needed for the understanding of their mechanism of action and the rational design of drugs against these highly relevant therapeutic targets. Recently, we have determined the cryo-EM structure of the human wild-type CCR5 chemokine receptor, which is also the HIV-1 coreceptor, in its active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist CCR5 chemokine ligands. In this chapter, we present a detailed protocol for the preparation of the active agonist chemokine•CCR5•Gi complex for cryo-EM studies including quality controls and caveats. As such the protocol may serve as starting point for structural and biophysical studies of other chemokine•chemokine receptor complexes.


Asunto(s)
Receptores CCR5 , Transducción de Señal , Quimiocina CCL5/química , Quimiocinas/metabolismo , Microscopía por Crioelectrón , Humanos , Receptores CCR5/química , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G
13.
Open Biol ; 12(4): 210390, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35414257

RESUMEN

Protein S-acylation, more commonly known as protein palmitoylation, is a biological process defined by the covalent attachment of long chain fatty acids onto cysteine residues of a protein, effectively altering the local hydrophobicity and influencing its stability, localization and overall function. Observed ubiquitously in all eukaryotes, this post translational modification is mediated by the 23-member family of zDHHC protein acyltransferases in mammals. There are thousands of proteins that are S-acylated and multiple zDHHC enzymes can potentially act on a single substrate. Since its discovery, numerous methods have been developed for the identification of zDHHC substrates and the individual members of the family that catalyse their acylation. Despite these recent advances in assay development, there is a persistent gap in knowledge relating to zDHHC substrate specificity and recognition, that can only be thoroughly addressed through in vitro reconstitution. Herein, we will review the various methods currently available for reconstitution of protein S-acylation for the purposes of identifying enzyme-substrate pairs with a particular emphasis on the advantages and disadvantages of each approach.


Asunto(s)
Acetiltransferasas , Proteína S , Acilación , Animales , Mamíferos , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
14.
Annu Rev Biochem ; 91: 629-649, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287474

RESUMEN

Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Microscopía por Crioelectrón , Transducción de Señal , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35140179

RESUMEN

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.


Asunto(s)
Acilcoenzima A/química , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Dominio Catalítico , Membrana Celular/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Lipoilación , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos
16.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163451

RESUMEN

Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/química , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Potencial de la Membrana Mitocondrial , Modelos Moleculares , Conformación Proteica
17.
Membranes (Basel) ; 12(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35207148

RESUMEN

A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.

18.
J Mol Biol ; 434(2): 167391, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34890647

RESUMEN

Previous reports present different models for the stabilization of the Fc-FcγRI immune complex. Although accord exists on the importance of L235 in IgG1 and some hydrophobic contacts for complex stabilization, discord exists regarding the existence of stabilizing glycoprotein contacts between glycans of IgG1 and a conserved FG-loop (171MGKHRY176) of FcγRIa. Complexes formed from the FcγRIa receptor and IgG1s containing biantennary glycans with N-acetylglucosamine, galactose, and α2,6-N-acetylneuraminic terminations were measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS), classified for dissimilarity with Welch's ANOVA and Games-Howell post hoc procedures, and modeled with molecular dynamics (MD) simulations. For each glycoform of the IgG1-FcγRIa complex peptic peptides of Fab, Fc and FcγRIa report distinct H/D exchange rates. MD simulations corroborate the differences in the peptide deuterium content through calculation of the percent of time that transient glycan-peptide bonds exist. These results indicate that stability of IgG1-FcγRIa complexes correlate with the presence of intermolecular glycoprotein interactions between the IgG1 glycans and the 173KHR175 motif within the FG-loop of FcγRIa. The results also indicate that intramolecular glycan-protein bonds stabilize the Fc region in isolated and complexed IgG1. Moreover, HDX-MS data evince that the Fab domain has glycan-protein binding contacts within the IgG1-FcγRI complex.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Glicoproteínas/química , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Inmunoglobulina G/química , Simulación de Dinámica Molecular , Receptores de IgG/química , Anticuerpos Monoclonales/química , Complejo Antígeno-Anticuerpo/metabolismo , Galactosa , Glicoproteínas/metabolismo , Proteínas de la Membrana/química , Péptidos/química , Péptidos/metabolismo , Polisacáridos , Unión Proteica
19.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34753818

RESUMEN

Multidrug and toxic compound extrusion (MATE) transporters are widespread in all domains of life. Bacterial MATE transporters confer multidrug resistance by utilizing an electrochemical gradient of H+ or Na+ to export xenobiotics across the membrane. Despite the availability of X-ray structures of several MATE transporters, a detailed understanding of the transport mechanism has remained elusive. Here we report the crystal structure of a MATE transporter from Aquifex aeolicus at 2.0-Å resolution. In light of its phylogenetic placement outside of the diversity of hitherto-described MATE transporters and the lack of conserved acidic residues, this protein may represent a subfamily of prokaryotic MATE transporters, which was proven by phylogenetic analysis. Furthermore, the crystal structure and substrate docking results indicate that the substrate binding site is located in the N bundle. The importance of residues surrounding this binding site was demonstrated by structure-based site-directed mutagenesis. We suggest that Aq_128 is functionally similar but structurally diverse from DinF subfamily transporters. Our results provide structural insights into the MATE transporter, which further advances our global understanding of this important transporter family.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Aquifex/genética , Proteínas Bacterianas/genética , Sitios de Unión/genética , Mutagénesis Sitio-Dirigida , Filogenia , Células Procariotas/fisiología
20.
Biochem Soc Trans ; 49(3): 1189-1203, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34100892

RESUMEN

Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Glicoconjugados/química , Glicosiltransferasas/química , Proteínas de la Membrana/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Conformación de Carbohidratos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Glicoconjugados/biosíntesis , Glicosiltransferasas/metabolismo , Cinética , Proteínas de la Membrana/metabolismo , Modelos Químicos , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA