Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
BMC Microbiol ; 24(1): 328, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244527

RESUMEN

BACKGROUND: Staphylococcus aureus is an infectious bacterium that is frequently found in healthcare settings and the community. This study aimed to prepare rutin-loaded chitosan nanoparticles (Rut-CS NPs) and assess their antibacterial activity against pathogenic strains of S. aureus. RESULTS: The synthesized Rut-CS NPs exhibited an amorphous morphology with a size ranging from 160 to 240 nm and a zeta potential of 37.3 mV. Rut-CS NPs demonstrated significant antibacterial activity against S. aureus strains. Following exposure to Rut-CS NPs, the production of staphyloxanthin pigment decreased by 43.31-89.63%, leading to increased susceptibility of S. aureus to hydrogen peroxide. Additionally, visual inspection of cell morphology indicated changes in membrane integrity and permeability upon Rut-CS NPs exposure, leading to a substantial increase (107.07-191.08%) in cytoplasmic DNA leakage in the strains. Furthermore, ½ MIC of Rut-CS NPs effectively inhibited the biofilm formation (22.5-37.5%) and hemolytic activity (69-82.59%) in the S. aureus strains. CONCLUSIONS: Our study showcases that Rut-CS NPs can serve as a novel treatment agent to combat S. aureus infections by altering cell morphology and inhibiting virulence factors of S. aureus.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Pruebas de Sensibilidad Microbiana , Nanopartículas , Rutina , Staphylococcus aureus , Xantófilas , Staphylococcus aureus/efectos de los fármacos , Quitosano/farmacología , Quitosano/química , Rutina/farmacología , Rutina/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/química , Hemólisis/efectos de los fármacos , Factores de Virulencia , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Humanos , Peróxido de Hidrógeno/farmacología
2.
Adv Sci (Weinh) ; : e2402693, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136057

RESUMEN

Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.

3.
Molecules ; 29(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124920

RESUMEN

Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, ß-galactosidase, ß-glucosidase, and N-acetyl-ß-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.


Asunto(s)
Antifúngicos , Colletotrichum , Aceites Volátiles , Especies Reactivas de Oxígeno , Ruta , Colletotrichum/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ruta/química , Antifúngicos/farmacología , Antifúngicos/química , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/microbiología , Pruebas de Sensibilidad Microbiana , Fragmentación del ADN/efectos de los fármacos
4.
J Hazard Mater ; 478: 135562, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178779

RESUMEN

The global attention on microplastic pollution and its implications for human health has grown in recent years. Additionally, the co-existence of heavy metals may significantly alter microplastics' physicochemical characteristics, potentially amplifying their overall toxicity-a facet that remains less understood. In this study, we focused the membrane toxicity of modified polystyrene microplastics (PS-MPs) following cadmium (Cd) pretreatment. Our findings revealed that Cd-pretreated PS-MPs exacerbated their toxic effects, including diminished membrane integrity and altered phase fluidity in simulated lipid membrane giant unilamellar vesicles (GUVs), as well as heightened membrane permeability, protein damage, and lipid peroxidation in red blood cells and macrophages. Mechanistically, these augmented membrane toxicities can be partially ascribed to modifications in the surface roughness and hydrophilicity of Cd-pretreated PS-MPs, as well as to interactions between PS-MPs and lipid bilayers. Notably, hydrogen bonds emerged as a crucial mechanism underlying the enhanced interaction of PS-MPs with lipid bilayers.


Asunto(s)
Cadmio , Enlace de Hidrógeno , Microplásticos , Poliestirenos , Poliestirenos/química , Poliestirenos/toxicidad , Microplásticos/toxicidad , Microplásticos/química , Cadmio/toxicidad , Cadmio/química , Animales , Humanos , Membrana Dobles de Lípidos/química , Macrófagos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Liposomas Unilamelares/química , Membrana Celular/efectos de los fármacos , Ratones
5.
Mar Drugs ; 22(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39195447

RESUMEN

Two new compounds, macrolactin XY (1) and (5R, 9S, 10S)-5-(hydroxymethyl)-1,3,7-decatriene-9,10-diol (2), together with nine known compounds (3-11) were isolated from the marine Bacillus subtilis sp. 18 by the OSMAC strategy. These compounds were evaluated for antibacterial activity against six tested microorganisms. Compounds 1-5 and 7-10 showed varied antibacterial activity, with the minimum inhibitory concentration (MIC) ranging from 3 to 12 µg/mL. Macrolactin XY (1) was found to possess superior antibacterial activity, especially exhibiting significant effectiveness against Enterococcus faecalis. The antibacterial activity mechanism against E. faecalis was investigated. The mechanism may disrupt bacterial cell membrane integrity and permeability, and also inhibit the expression of genes associated with bacterial energy metabolism, as established by the experiments concerning cell membrane potential, SDS-PAGE electrophoresis, cell membrane integrity, and key gene expressions. This study offers valuable insights and serves as a theoretical foundation for the future development of macrolactins as antibacterial precursors.


Asunto(s)
Antibacterianos , Bacillus subtilis , Macrólidos , Pruebas de Sensibilidad Microbiana , Bacillus subtilis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Macrólidos/farmacología , Macrólidos/aislamiento & purificación , Macrólidos/química , Enterococcus faecalis/efectos de los fármacos , Organismos Acuáticos , Membrana Celular/efectos de los fármacos
6.
J Transl Med ; 22(1): 664, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014470

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS: To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS: We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS: Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.


Asunto(s)
Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Fosfatidato Fosfatasa , Animales , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Fosfatidato Fosfatasa/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones Transgénicos , Ratones , Contracción Muscular , Terapia Molecular Dirigida , Ratones Endogámicos C57BL , Terapia Genética , Masculino
7.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39005428

RESUMEN

Sound sensitivity is one of the most common sensory complaints for people with autism spectrum disorders (ASDs). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria, which are the primary source of energy in cells, in a genetic model of ASD, Fragile X syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons, has not been characterized yet. To address this question, we imaged the MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the Outer Mitochondrial Membrane and in the matrix, respectively. These markers allow exploration of mitochondrial subcompartments. Our integrated imaging pipeline reveals significant sex-specific differences between genotypes. Colocalization analyses between TOMM20 and PMPCB reveal that the integrity of mitochondrial subcompartments is most disrupted in female FXS mice compared to female wildtype mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts. Our approach paves the way to understanding how cellular mechanisms important to sound encoding are altered in ASDs.

8.
Data Brief ; 54: 110295, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962200

RESUMEN

The data presented in this article are an update of the dataset provided by Musazzi et al. [1] and are related to the research article entitled "Equivalence assessment of creams with quali-quantitative differences in light of the EMA and FDA regulatory framework" [2]. In vitro permeation study (IVPT) is typically conducted using the method of Franz's diffusion cell for assessing the biopharmaceutical performance of topically applied products. While the human epidermis is considered the benchmark, various animal models (for instance, pig ear) have been accepted as a permeation membrane. Nonetheless, it is crucial to evaluate the integrity of the membrane to ensure the quality of the experiments. The methods employed for this assessment vary, and the outcomes are heavily reliant on the operational conditions, and the model membrane. The article contributes to the existing dataset by providing data on the electrical resistance values of pig ear skin samples and their correlation with the in vitro permeability fluxes of caffeine and benzoic acid. This data is utilized to determine a suitable cut-off for verifying the skin integrity of such an animal model. This information could be beneficial for facilitating critical or comprehensive analyses, contributing to the creation of a standard method.

9.
Front Vet Sci ; 11: 1389070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952806

RESUMEN

Introduction: Post-ovulatory aging is a time-dependent deterioration of ovulated oocytes and a major limiting factor reducing the fitness of offspring. This process may lead to the activation of cell death pathways like apoptosis in oocytes. Methodology: We evaluated oocyte membrane integrity, egg developmental competency, and mRNA abundance of apoptosis-related genes by RT-qPCR. Oocytes from zebrafish Danio rerio were retained in vivo at 28.5°C for 24 h post-ovulation (HPO). Viability was assessed using trypan blue (TB) staining. The consequences of in vivo oocyte aging on the developmental competence of progeny were determined by the embryo survival at 24 h post fertilization, hatching, and larval malformation rates. Results: The fertilization, oocyte viability, and hatching rates were 91, 97, and 65% at 0 HPO and dropped to 62, 90, and 22% at 4 HPO, respectively. The fertilizing ability was reduced to 2% at 8 HPO, while 72% of oocytes had still intact plasma membranes. Among the apoptotic genes bcl-2 (b-cell lymphoma 2), bada (bcl2-associated agonist of cell death a), cathepsin D, cathepsin Z, caspase 6a, caspase 7, caspase 8, caspase 9, apaf1, tp53 (tumor protein p53), cdk1 (cyclin-dependent kinase 1) studied, mRNA abundance of anti-apoptotic bcl-2 decreased and pro-apoptotic cathepsin D increased at 24 HPO. Furthermore, tp53 and cdk1 mRNA transcripts decreased at 24 HPO compared to 0 HPO. Discussion: Thus, TB staining did not detect the loss of oocyte competency if caused by aging. TB staining, however, could be used as a simple and rapid method to evaluate the quality of zebrafish oocytes before fertilization. Taken together, our results indicate the activation of cell death pathways in the advanced stages of oocyte aging in zebrafish.

10.
J Fungi (Basel) ; 10(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39057373

RESUMEN

This paper investigated the inhibitory effect of Sesamol (Ses) on Pestalotiopsis neglecta. The potential inhibitory mechanisms were explored by observing changes in cell morphology, measuring alterations in cell membrane-related indices, as well as energy metabolism-related indices and changes in enzyme activities related to virulence. The results show that Ses completely inhibited the growth of P. neglecta at 600 µg/mL (minimum inhibitory concentration and minimum fungicidal concentration), with an EC50 of 142 ± 13.22 µg/mL. As observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Ses treatment resulted in the breakage and crumpling of P. neglecta cell membrane and organelle lysis. Ergosterol content and the total lipid in P. neglecta treated with 300 µg/mL Ses was 91.52% and 54% of that in the control groups, respectively. In addition, spores were stained, increased leakage of intracellular constituents at 260 nm, and decreased extracellular pH. This suggests damage to the cell membrane integrity and permeability. Furthermore, Ses decreased the ATP levels and key enzymes in the tricarboxylic acid (TCA) cycle, indicating interference with the fungal energy metabolism. Moreover, the activities of polygalacturonase (PG) and endoglucanase (EG) of P. neglecta treated with 300 µg/mL of Ses were only 28.20% and 29.13% of that in the control groups, respectively, indicating that Ses can reduce the virulence of P. neglecta. In conclusion, our results show that Ses should be considered as a potential plant-derived fungicide due to its ability to disrupt the morphology of P. neglecta, damage cell membrane integrity and permeability in P. neglecta, interfere with energy metabolism, and reduce its virulence, ultimately affecting the fungal growth.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38914841

RESUMEN

Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1ß. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.

12.
Int J Biol Macromol ; 271(Pt 1): 132484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821795

RESUMEN

Alginate oligosaccharides (AOS) are crucial carbohydrate-based biomaterial used in the synthesis of potential drugs and biological agents, but their antibacterial activities are not significant. In this study, AOS acylated derivatives were synthesized by grafting maleic anhydride (MA) onto AOS at varying ratios. Additionally, their inhibitory effects against Staphylococcus aureus were thoroughly investigated. Characterization of the AOS acylated derivatives (AOS-MA-x, where x = 1, 5, 10, and 20) was conducted using Fourier-transformed infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, and X-ray diffraction, which confirmed the successful synthesis of these derivatives. The bacteriostatic activity of the AOS-MA derivatives was assessed using growth curves and plate coating method, demonstrating significant antibacterial effects against S. aureus, as compared with AOS. Among these derivatives, AOS-MA-20 exhibited the most potent bacteriostatic activity and was selected for further investigation of its inhibitory mechanism. Scanning electron microscopy analysis revealed that treatment with AOS-MA-20 led to the lysis and rupture of S. aureus cells, expelling their intracellular contents. Moreover, AOS-MA-20 disrupted the integrity of cell wall and cell membrane, impacted ATPase activity, and inhibited the formation of biofilm to some extent, ultimately resulting in bacterial death. These findings lay a foundational framework for the development of environmentally friendly antimicrobial agents.


Asunto(s)
Alginatos , Antibacterianos , Pruebas de Sensibilidad Microbiana , Oligosacáridos , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Alginatos/química , Alginatos/farmacología , Oligosacáridos/química , Oligosacáridos/farmacología , Oligosacáridos/síntesis química , Acilación , Biopelículas/efectos de los fármacos , Técnicas de Química Sintética
13.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727840

RESUMEN

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Membrana Celular , Isotiocianatos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Ciclo Celular/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismo
14.
Bioresour Technol ; 402: 130808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723724

RESUMEN

The substantial discharge of ferroferric oxide nanoparticles (Fe3O4 NPs) into sewage threatens the survival of functional microorganisms in wastewater treatment. This study elucidated responses of anaerobic ammonium oxidation (anammox) consortia to inhibition from high Fe3O4 NPs concentration and recovery mechanisms. The nitrogen removal efficiency decreased by 20.3 % and recovered after 55 days under 1000 mg/L Fe3O4 NPs concentration. Toxicity was attributed to reactive oxygen species (ROS) production. The excessive ROS damaged membrane integrity, nitrogen metabolism, and DNA synthesis, resulting in the inhibition of anammox bacteria activity. However, recovery mechanisms of anammox consortia activity were activated in response to 1000 mg/L Fe3O4 NPs. The increase of heme oxygenase-1, thioredoxin, and nicotinamide adenine dinucleotide-quinone oxidoreductase genes alleviated oxidative stress. Furthermore, the activation of metabolic processes associated with membrane and DNA repair promoted recovery of anammox bacteria activity. This study provided new insights into NPs contamination and control strategies during anammox process.


Asunto(s)
Oxidación-Reducción , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Amonio/metabolismo , Anaerobiosis , Nitrógeno , Bacterias/metabolismo , Consorcios Microbianos , Estrés Oxidativo/efectos de los fármacos , Aguas Residuales/química
15.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38733636

RESUMEN

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Asunto(s)
Aspergillus flavus , Aceite de Árbol de Té , Terpenos , Triticum , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Aceite de Árbol de Té/farmacología , Terpenos/farmacología , Triticum/microbiología , Antifúngicos/farmacología , Compuestos Orgánicos Volátiles/farmacología , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas , Grano Comestible/microbiología , Conservación de Alimentos/métodos
16.
FEBS J ; 291(14): 3191-3210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38602252

RESUMEN

Adaptation to hypoxia has attracted much public interest because of its clinical significance. However, hypoxic adaptation in the body is complicated and difficult to fully explore. To explore previously unknown conserved mechanisms and key proteins involved in hypoxic adaptation in different species, we first used a yeast model for mechanistic screening. Further multi-omics analyses in multiple species including yeast, zebrafish and mice revealed that glycerophospholipid metabolism was significantly involved in hypoxic adaptation with up-regulation of lysophospholipid acyltransferase (ALE1) in yeast, a key protein for the formation of dipalmitoyl phosphatidylcholine [DPPC (16:0/16:0)], which is a saturated phosphatidylcholine. Importantly, a mammalian homolog of ALE1, lysophosphatidylcholine acyltransferase 1 (LPCAT1), enhanced DPPC levels at the cell membrane and exhibited the same protective effect in mammalian cells under hypoxic conditions. DPPC supplementation effectively attenuated growth restriction, maintained cell membrane integrity and increased the expression of epidermal growth factor receptor under hypoxic conditions, but unsaturated phosphatidylcholine did not. In agreement with these findings, DPPC treatment could also repair hypoxic injury of intestinal mucosa in mice. Taken together, ALE1/LPCAT1-mediated DPPC formation, a key pathway of glycerophospholipid metabolism, is crucial for cell viability under hypoxic conditions. Moreover, we found that ALE1 was also involved in glycolysis to maintain sufficient survival conditions for yeast. The present study offers a novel approach to understanding lipid metabolism under hypoxia and provides new insights into treating hypoxia-related diseases.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Membrana Celular , Glicerofosfolípidos , Animales , Humanos , Ratones , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Adaptación Fisiológica/genética , Membrana Celular/metabolismo , Glicerofosfolípidos/metabolismo , Hipoxia/metabolismo , Hipoxia/genética , Mucosa Intestinal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Pez Cebra/metabolismo , Pez Cebra/genética
17.
Environ Res ; 252(Pt 2): 118958, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640987

RESUMEN

In modern agricultural practices, agrochemicals and pesticides play an important role in protecting the crops from pests and elevating agricultural productivity. This strategic utilization is essential to meet global food demand due to the relentless growth of the world's population. However, the indiscriminate application of these substances may result in environmental hazards and directly affect the soil microorganisms and crop production. Considering this, an in vitro study was carried out to evaluate the pesticides' effects i.e. lambda cyhalothrin (insecticide) and fosetyl aluminum (fungicide) at lower, recommended, and higher doses on growth behavior, enzymatic profile, total soluble protein production, and lipid peroxidation of bacterial specimens (Pseudomonas aeruginosa and Bacillus subtilis). The experimental findings demonstrated a concentration-dependent decrease in growth of both tested bacteria, when exposed to fosetyl aluminium concentrations exceeding the recommended dose. This decline was statistically significant (p < 0.000). However, lambda cyhalothrin at three times of recommended dose induces 10% increase in growth of Pseudomonas aeruginosa (P. aeruginosa) and 76.8% decrease in growth of Bacillus subtilis (B. subtilis) respectively as compared to control. These results showed the stimulatory effect of lambda cyhalothrin on P. aeruginosa and inhibitory effect on B. subtilis. Pesticides induced notable alterations in biomarker enzymatic assays and other parameters related to oxidative stress among bacterial strains, resulting in increased oxidative stress and membrane permeability. Generally, the maximum toxicity of both (P. aeruginosa and B. subtilis) was shown by fosetyl aluminium, at three times of recommended dose. Fosetyl aluminium induced morphological changes like cellular cracking, reduced viability, aberrant margins and more damage in both bacterial strains as compared to lambda cyhalothrin when observed under scanning electron microscope (SEM). Conclusively the, present study provide an insights into a mechanistic approach of pyrethroid insecticide and phosphonite fungicide induced cellular toxicity towards bacteria.


Asunto(s)
Bacillus subtilis , Nitrilos , Pseudomonas aeruginosa , Piretrinas , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Piretrinas/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Nitrilos/toxicidad , Insecticidas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Fungicidas Industriales/toxicidad
18.
Animals (Basel) ; 14(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38672385

RESUMEN

There are limited studies on the factors affecting the success of ram epididymal spermatozoa (REPS) cryopreservation. On this note, the current study assessed the influence of three commercial soy lecithin-based semen extenders, AndroMed® (AND), BioXcell® (BIO), and OviXcell® (OVI), and two concentrations (400 × 106 vs. 200 × 106 spermatozoa/mL) on the pre-freeze and post-thaw quality of REPS. The REPS were retrieved from nine adult rams' testes and diluted with each of the three extenders to both concentrations. Straws were frozen manually. Standard motility (SMP) and kinematic parameters (KPs) were assessed via a CASA, while spermatozoa viability, morphology, and acrosomal integrity were assessed via the Kovács-Foote staining technique. The concentration did not significantly affect the pre-freeze and post-thaw SMP and KPs of REPS. BIO and OVI had significantly higher pre-freeze and post-thaw BCFs, post-thaw VAP, and the percentage of all intact heads than AND. In contrast, AND had a significantly lower percentage of REPS with tail defects than BIO and OVI. The 400 × 106 spermatozoa/mL concentration resulted in a significantly higher percentage of all intact heads than the 200 × 106 spermatozoa/mL concentration. Freezing significantly increased tail defects and decreased the percentage of REPS with distal cytoplasmic droplets. The cryopreservation of REPS at the 400 × 106 spermatozoa/mL concentration is recommended. All three extenders must be optimized to preserve the viability, membrane integrity, and better normal morphology of REPS; the reason for increased tail abnormality after the freezing/thawing process needs to be studied.

19.
Methods Mol Biol ; 2778: 367-381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478289

RESUMEN

Biogenesis of the outer membrane (OM) of Gram-negative bacteria involves two processes essential for growth, that is, the insertion of ß-barrel outer membrane proteins (OMPs) by the Bam complex and the assembly of the LPS-containing outer leaflet of the OM by the LptD/E complex from the Lpt pathway. These processes have only recently gained attention as targets for antimicrobial drugs. Our laboratory has developed a simple screening tool to identify compounds that target processes that disrupt the biogenesis of the cell envelope, among which the activity of the Bam complex. The tool is based on the observation that such a disruption triggers cell envelope stress response systems, such as the σE, Rcs, and Cpx responses. In essence, specific stress-responsive promoters are fused to a gene encoding a bright fluorescent protein to serve as a panel of easy-to-monitor stress reporter plasmids. Using these plasmids, compounds triggering these stress systems and, therefore, putatively disrupting the biogenesis of the cell envelope can be identified by the nature and kinetics of the induced stress responses. We describe here the use of the stress reporter plasmids in high-throughput phenotypic screening using multi-well plates.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo
20.
Cryobiology ; 116: 104883, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38452848

RESUMEN

Post-thaw cell viability assessment is very important in cryopreservation because it is the main assessment method used to optimize cryopreservation protocols for each cell type; hence, having standardized accurate, quick, and reliable assays for post-thaw cell viability measurements is of utmost importance. The trypan blue exclusion assay and nucleic-acid-binding fluorescence-based assays are two different methods for cell viability assessment. Both assays identify cells with damaged membranes by whether they let a compound enter the cell. In this study, these two assays are compared in the context of cryopreservation and the impacts of important cryopreservation parameters on the differences in measurements are investigated. H9c2 myoblasts were cryopreserved with different freezing protocols. Cell membrane integrities were measured immediately after thaw as well as after cryoprotectant removal by a hemocytometer-based trypan blue dye exclusion assay and a dual fluorometric SYTO 13/GelRed assay; and the results were compared. This study quantifies how (i) the absence or presence of different cryoprotectants, (ii) different cell-cryoprotectant incubation conditions, and (iii) the presence or removal of cryoprotectants after thaw affect the differences between these two viability assays.


Asunto(s)
Supervivencia Celular , Criopreservación , Crioprotectores , Colorantes Fluorescentes , Azul de Tripano , Azul de Tripano/química , Criopreservación/métodos , Supervivencia Celular/efectos de los fármacos , Crioprotectores/farmacología , Animales , Línea Celular , Colorantes Fluorescentes/química , Ratas , Mioblastos/citología , Mioblastos/efectos de los fármacos , Membrana Celular , Congelación , Dimetilsulfóxido/farmacología , Dimetilsulfóxido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA