Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biotechnol ; 392: 48-58, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38906221

RESUMEN

Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.


Asunto(s)
Adhesión Celular , Movimiento Celular , Guayacol , Melanoma Experimental , Nanopartículas , Animales , Movimiento Celular/efectos de los fármacos , Nanopartículas/química , Ratones , Guayacol/análogos & derivados , Guayacol/farmacología , Guayacol/química , Línea Celular Tumoral , Adhesión Celular/efectos de los fármacos , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Paxillin/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
2.
Int J Pharm ; 646: 123420, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37778514

RESUMEN

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.


Asunto(s)
Antineoplásicos , Venenos de Crotálidos , Melanoma , Animales , Ratones , Modelos Animales de Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/química , Venenos de Crotálidos/química , Venenos de Crotálidos/farmacología
3.
Int J Pharm, v.646, 123420, nov. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5143

RESUMEN

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.

4.
Int J Pharm, v. 646, 123420, nov. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5121

RESUMEN

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.

5.
Phytochemistry ; 189: 112849, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34182200

RESUMEN

Anthocyanins (AN), natural compounds daily consumed by humans, have outstanding therapeutical potential if administered topically in melanoma pathology. However, the search for efficient therapy development is still in progress, owing to the lack of complete understanding of the AN intracellular path, once they are uptaken by the cells. This target is constrained by the need for an imaging strategy that would enable their intracellular detection and localization in-situ. In this light, diphenylboric acid 2-aminoethyl (DPBA), a non-fluorescent reagent, was here successfully used to form fluorescent complexes with AN. The AN used are the cyanidin aglycon as a free standard molecule (CY), and the glycosylated compounds, extracted and purified from chokeberry fruits (AE). In solution, it was observed that the fluorescence emission increased by 39% (CY@DPBA), and by 34% (AE@DPBA), which concludes that AN form fluorescent complexes with DPBA (CY@DPBA and AE@DPBA). In addition, using NMR (nuclear magnetic resonance) spectroscopy, and HRMS (high-resolution mass spectrometry) analysis, the structure of the CY@DPBA complex was efficiently elucidated. In-vitro experiments showed that the complexes formed after the treatment proved to be non-toxic on B16-F10 cells. The sub-cellular visualization of all AN was monitored by fluorescence microscopy and flow cytometry, demonstrating detectable signals of the non-metabolized CY and glycosylated CY inside melanoma cells. This study reports that the use of DPBA to image AN intracellularly is a sensitive, non-invasive and successful method that can extend its application in broad fields like drug development or metabolism-associated mechanisms.


Asunto(s)
Antocianinas , Melanoma Experimental , Animales , Antocianinas/farmacología , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Imagen Óptica
6.
Cancer Biomark ; 28(3): 301-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390599

RESUMEN

BACKGROUND: This study aimed to evaluate the relationship between survivin expression and melanoma after 5-aminolevulinic acid (5-ALA)-mediated sonodynamic therapy. METHODS: Immunohistochemistry was used to detect survivin protein expression in human melanoma clinical samples. Subsequently, the effects of 5-ALA-mediated sonodynamic therapy were determined by measuring the volume of melanoma xenografts and the bodyweights of melanoma-bearing nude mice. The MTT assay was used to detect the viability of melanoma B16-F10 cells under the action of 5-ALA-mediated sonodynamic therapy, and Western blotting and PCR were used to detect survivin expression in melanoma cells and in the melanoma-xenograft model. RESULTS: Survivin expression was significantly upregulated in human melanoma tissues compared with that of non-melanoma tissues. In the in vivo case, 5-ALA-mediated sonodynamic therapy significantly delayed tumor growth, prolonged the survival of mice, and inhibited the expression of survivin. In the in vitro case, 5-ALA-mediated sonodynamic therapy inhibited B16-F10 cell proliferation and decreased survivin expression at both protein and mRNA levels. CONCLUSION: Our results suggest that 5-ALA-mediated sonodynamic therapy inhibited B16-F10 cell proliferation and melanoma-xenograft growth and prolonged survival of melanoma-bearing nude mice, which might be through downregulation of survivin expression.


Asunto(s)
Ácido Aminolevulínico/administración & dosificación , Melanoma Experimental/terapia , Neoplasias Cutáneas/terapia , Survivin/antagonistas & inhibidores , Terapia por Ultrasonido/métodos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Terapia Combinada/métodos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/efectos de la radiación , Humanos , Masculino , Melanoma Experimental/mortalidad , Melanoma Experimental/patología , Ratones , Pronóstico , Piel/patología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Análisis de Supervivencia , Survivin/metabolismo , Factores de Tiempo , Regulación hacia Arriba
7.
Med Chem ; 15(7): 715-728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30892163

RESUMEN

BACKGROUND: Tyrosinase is involved in the melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders. Controlling the melanogenesis could be an important strategy for treating abnormal pigmentation. METHODS: In the present study, a series of amide derivatives (3a-e and 5a-e) were synthesized aiming to inhibit tyrosinase activity and melanin production. All derivatives were screened for tyrosinase inhibition in a cell-free system. The possible interactions of amide derivatives with tyrosinase enzyme and effect of these interactions on tyrosinase structure were checked by molecular docking in silico and by Circular Dichroism (CD) studies, respectively. The most potent amide derivative (5c) based on cell-free experiments, was further tested for cellular ROS inhibition and for tyrosinase activity using mouse skin melanoma (B16F10) cells. RESULTS: The tyrosinase inhibitory concentration (IC50) for tested compounds was observed between the range of 68 to 0.0029 µg/ml with a lowest IC50 value of compound 5c which outperforms the reference arbutin and kojic acid. The cellular tyrosinase activity and melanin quantification assay demonstrate that 15µg/ml of 5c attenuates 36% tyrosinase, 24% melanin content of B16F10 cells without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that 5c effectively reduces melanogenesis without perceptible toxicity. Furthermore, the molecular docking demonstrates that compound 5c interacts with copper ions and multiple amino acids in the active site of tyrosinase with best glide score (-5.387 kcal/mol), essential for mushroom tyrosinase inhibition and the ability to diminish the melanin synthesis in-vitro and in-vivo. CONCLUSION: Thus, we propose compound 5c as a potential candidate to control tyrosinase rooted hyperpigmentation in the future.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Melanoma/tratamiento farmacológico , Monofenol Monooxigenasa/antagonistas & inhibidores , Agaricales/enzimología , Amidas/síntesis química , Amidas/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cinética , Melaninas/análisis , Melanoma/metabolismo , Melanoma/patología , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Pez Cebra
8.
Environ Toxicol ; 32(9): 2097-2112, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28444820

RESUMEN

Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Melanoma Experimental/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , FN-kappa B/metabolismo , Invasividad Neoplásica , Transducción de Señal
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-487862

RESUMEN

Objective To investigate the effect of bisdemethoxycurcumin on the proliferation and apoptosis of melanoma B16-F10 cells. Methods The B16-F10 cells were incubated with bisdemethoxycurcumin for 24 h, and MTT assay was used to detect the proliferation of B16-F10 cell. Flow cytometry was used to detect cell cycle and cell apoptosis. A C57BL/6 mouse melanoma model was established to investigate the effect of bisdemethoxycurcumin on the proliferation of melanoma. Expression of BCL-1 in B16-F10 cells and tissues was detected by western blotting assay. Results bisdemethoxycurcumin could significantly inhibit B16-F10 cell proliferation, induce B16-F10 cell apoptosis and block the cell cycle at S phase. The intravenous dosing of bisdemethoxycurcumin could inhibit the growth of melanoma. Bisdemethoxycurcumin could inhibit the expression of BCL-1. Conclusion Bisdemethoxycurcumin can inhibit the proliferation of B16-F10 cell, resulting from its role in promoting cell apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA