Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cureus ; 16(6): e61523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38957241

RESUMEN

This review aims to explore the potential of artificial intelligence (AI) in coronary CT angiography (CCTA), a key tool for diagnosing coronary artery disease (CAD). Because CAD is still a major cause of death worldwide, effective and accurate diagnostic methods are required to identify and manage the condition. CCTA certainly is a noninvasive alternative for diagnosing CAD, but it requires a large amount of data as input. We intend to discuss the idea of incorporating AI into CCTA, which enhances its diagnostic accuracy and operational efficiency. Using such AI technologies as machine learning (ML) and deep learning (DL) tools, CCTA images are automated to perfection and the analysis is significantly refined. It enables the characterization of a plaque, assesses the severity of the stenosis, and makes more accurate risk stratifications than traditional methods, with pinpoint accuracy. Automating routine tasks through AI-driven CCTA will reduce the radiologists' workload considerably, which is a standard benefit of such technologies. More importantly, it would enable radiologists to allocate more time and expertise to complex cases, thereby improving overall patient care. However, the field of AI in CCTA is not without its challenges, which include data protection, algorithm transparency, as well as criteria for standardization encoding. Despite such obstacles, it appears that the integration of AI technology into CCTA in the future holds great promise for keeping CAD itself in check, thereby aiding the fight against this disease and begetting better clinical outcomes and more optimized modes of healthcare. Future research on AI algorithms for CCTA, making ethical use of AI, and thereby overcoming the technical and clinical barriers to widespread adoption of this new tool, will hopefully pave the way for profound AI-driven transformations in healthcare.

2.
Comput Biol Med ; 170: 108002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277921

RESUMEN

The HER2 expression status in breast cancer liver metastases is a crucial indicator for the diagnosis, treatment, and prognosis assessment of patients. And typical diagnosis involves assessing the HER2 expression status through invasive procedures like biopsy. However, this method has certain drawbacks, such as being difficult in obtaining tissue samples and requiring long examination periods. To address these limitations, we propose an AI-aided diagnostic model. This model enables rapid diagnosis. It diagnoses a patient's HER2 expression status on the basis of preprocessed images, which is the region of the lesion extracted from a CT image rather than from an actual tissue sample. The algorithm of the model adopts a parallel structure, including a Branch Block and a Trunk Block. The Branch Block is responsible for extracting the gradient characteristics between the tumor sub-environments, and the Trunk Block is for fusing the characteristics extracted by the Branch Block. The Branch Block contains CNN with self-attention, which combines the advantages of CNN and self-attention to extract more meticulous and comprehensive image features. And the Trunk Block is so designed that it fuses the extracted image feature information without affecting the transmission of the original image features. The Conv-Attention is used to calculate the attention in the Trunk Block, which uses kernel dot product and is responsible for providing the weight for the self-attention in the process of using convolution induced deviation calculation. Combined with the structure of the model and the method used, we refer to this model as TBACkp. The dataset comprises the enhanced abdominal CT images of 151 patients with liver metastases from breast cancer, together with the corresponding HER2 expression levels for each patient. The experimental results are as follows: (AUC: 0.915, ACC: 0.854, specificity: 0.809, precision: 0.863, recall: 0.881, F1-score: 0.872). The results demonstrate that this method can accurately assess the HER2 expression status in patients when compared with other advanced deep learning model.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , Femenino , Humanos , Algoritmos , Biopsia , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario
3.
Glob Chall ; 8(1): 2300163, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223896

RESUMEN

The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields-Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy-are discussed.

4.
J Clin Med ; 12(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685563

RESUMEN

The rapid evolution of artificial intelligence (AI) in medical imaging analysis has significantly impacted musculoskeletal radiology, offering enhanced accuracy and speed in radiograph evaluations. The potential of AI in clinical settings, however, remains underexplored. This research investigates the efficiency of a commercial AI tool in analyzing radiographs of patients who have undergone total knee arthroplasty. The study retrospectively analyzed 200 radiographs from 100 patients, comparing AI software measurements to expert assessments. Assessed parameters included axial alignments (MAD, AMA), femoral and tibial angles (mLPFA, mLDFA, mMPTA, mLDTA), and other key measurements including JLCA, HKA, and Mikulicz line. The tool demonstrated good to excellent agreement with expert metrics (ICC = 0.78-1.00), analyzed radiographs twice as fast (p < 0.001), yet struggled with accuracy for the JLCA (ICC = 0.79, 95% CI = 0.72-0.84), the Mikulicz line (ICC = 0.78, 95% CI = 0.32-0.90), and if patients had a body mass index higher than 30 kg/m2 (p < 0.001). It also failed to analyze 45 (22.5%) radiographs, potentially due to image overlay or unique patient characteristics. These findings underscore the AI software's potential in musculoskeletal radiology but also highlight the necessity for further development for effective utilization in diverse clinical scenarios. Subsequent studies should explore the integration of AI tools in routine clinical practice and their impact on patient care.

5.
J Imaging ; 9(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37754941

RESUMEN

Recently, deep learning has gained significant attention as a noteworthy division of artificial intelligence (AI) due to its high accuracy and versatile applications. However, one of the major challenges of AI is the need for more interpretability, commonly referred to as the black-box problem. In this study, we introduce an explainable AI model for medical image classification to enhance the interpretability of the decision-making process. Our approach is based on segmenting the images to provide a better understanding of how the AI model arrives at its results. We evaluated our model on five datasets, including the COVID-19 and Pneumonia Chest X-ray dataset, Chest X-ray (COVID-19 and Pneumonia), COVID-19 Image Dataset (COVID-19, Viral Pneumonia, Normal), and COVID-19 Radiography Database. We achieved testing and validation accuracy of 90.6% on a relatively small dataset of 6432 images. Our proposed model improved accuracy and reduced time complexity, making it more practical for medical diagnosis. Our approach offers a more interpretable and transparent AI model that can enhance the accuracy and efficiency of medical diagnosis.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(3): 272-277, 2023 May 30.
Artículo en Chino | MEDLINE | ID: mdl-37288627

RESUMEN

OBJECTIVE: In order to solve the technical problems, clinical researchers face the process of medical imaging analysis such as data labeling, feature extraction and algorithm selection, a medical imaging oriented multi-disease research platform based on radiomics and machine learning technology was designed and constructed. METHODS: Five aspects including data acquisition, data management, data analysis, modeling and data management were considered. This platform provides comprehensive functions such as data retrieve and data annotation, image feature extraction and dimension reduction, machine learning model running, results validation, visual analysis and automatic generation of analysis reports, thus an integrated solution for the whole process of radiomics analysis has been generated. RESULTS: Clinical researchers can use this platform for the whole process of radiomics and machine learning analysis for medical images, and quickly produce research results. CONCLUSIONS: This platform greatly shortens the time for medical image analysis research, decreasing the work difficulty of clinical researchers, as well as significantly promoting their working efficiency.


Asunto(s)
Diagnóstico por Imagen , Aprendizaje Automático , Algoritmos , Radiografía
7.
Comput Biol Med ; 159: 106947, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37099976

RESUMEN

In this paper, a novel deep learning-based medical imaging analysis framework is developed, which aims to deal with the insufficient feature learning caused by the imperfect property of imaging data. Named as multi-scale efficient network (MEN), the proposed method integrates different attention mechanisms to realize sufficient extraction of both detailed features and semantic information in a progressive learning manner. In particular, a fused-attention block is designed to extract fine-grained details from the input, where the squeeze-excitation (SE) attention mechanism is applied to make the model focus on potential lesion areas. A multi-scale low information loss (MSLIL)-attention block is proposed to compensate for potential global information loss and enhance the semantic correlations among features, where the efficient channel attention (ECA) mechanism is adopted. The proposed MEN is comprehensively evaluated on two COVID-19 diagnostic tasks, and the results show that as compared with some other advanced deep learning models, the proposed method is competitive in accurate COVID-19 recognition, which yields the best accuracy of 98.68% and 98.85%, respectively, and exhibits satisfactory generalization ability as well.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Semántica
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-982227

RESUMEN

OBJECTIVE@#In order to solve the technical problems, clinical researchers face the process of medical imaging analysis such as data labeling, feature extraction and algorithm selection, a medical imaging oriented multi-disease research platform based on radiomics and machine learning technology was designed and constructed.@*METHODS@#Five aspects including data acquisition, data management, data analysis, modeling and data management were considered. This platform provides comprehensive functions such as data retrieve and data annotation, image feature extraction and dimension reduction, machine learning model running, results validation, visual analysis and automatic generation of analysis reports, thus an integrated solution for the whole process of radiomics analysis has been generated.@*RESULTS@#Clinical researchers can use this platform for the whole process of radiomics and machine learning analysis for medical images, and quickly produce research results.@*CONCLUSIONS@#This platform greatly shortens the time for medical image analysis research, decreasing the work difficulty of clinical researchers, as well as significantly promoting their working efficiency.


Asunto(s)
Aprendizaje Automático , Diagnóstico por Imagen , Algoritmos , Radiografía
9.
Diagnostics (Basel) ; 12(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428870

RESUMEN

Lingual ultrasound imaging is essential in linguistic research and speech recognition. It has been used widely in different applications as visual feedback to enhance language learning for non-native speakers, study speech-related disorders and remediation, articulation research and analysis, swallowing study, tongue 3D modelling, and silent speech interface. This article provides a comparative analysis and review based on quantitative and qualitative criteria of the two main streams of tongue contour segmentation from ultrasound images. The first stream utilizes traditional computer vision and image processing algorithms for tongue segmentation. The second stream uses machine and deep learning algorithms for tongue segmentation. The results show that tongue tracking using machine learning-based techniques is superior to traditional techniques, considering the performance and algorithm generalization ability. Meanwhile, traditional techniques are helpful for implementing interactive image segmentation to extract valuable features during training and postprocessing. We recommend using a hybrid approach to combine machine learning and traditional techniques to implement a real-time tongue segmentation tool.

10.
Comput Med Imaging Graph ; 87: 101817, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278767

RESUMEN

Lung segmentation in Computerized Tomography (CT) images plays an important role in various lung disease diagnosis. Most of the current lung segmentation approaches are performed through a series of procedures with manually empirical parameter adjustments in each step. Pursuing an automatic segmentation method with fewer steps, we propose a novel deep learning Generative Adversarial Network (GAN)-based lung segmentation schema, which we denote as LGAN. The proposed schema can be generalized to different kinds of neural networks for lung segmentation in CT images. We evaluated the proposed LGAN schema on datasets including Lung Image Database Consortium image collection (LIDC-IDRI) and Quantitative Imaging Network (QIN) collection with two metrics: segmentation quality and shape similarity. Also, we compared our work with current state-of-the-art methods. The experimental results demonstrated that the proposed LGAN schema can be used as a promising tool for automatic lung segmentation due to its simplified procedure as well as its improved performance and efficiency.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Bases de Datos Factuales , Pulmón/diagnóstico por imagen , Redes Neurales de la Computación
11.
J Orthop Surg Res ; 15(1): 539, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203411

RESUMEN

BACKGROUND: Collapse risk of osteonecrosis of the femoral head (ONFH) is estimated mainly based on static indicators, including lesion size and lesion location, but bone repairing is a dynamic process that lasts for years. The present study attempted to analyze the dynamic evolution of the osseous structure and its correlation with radiographic progression. METHODS: This retrospective study included 50 hips with ONFH from 50 patients. Participants were divided into the non-collapse group (n = 25) and the collapse group (n = 25). Original files of the initial computed tomography (CT) images were imported into imaging processing software for morphology analysis. The volume of sclerotic bone, the volume of soft tissue, and bone mineral density (BMD) were calculated. The linear correlations between the aforementioned indicators and the disease duration were estimated. The logistic regression analysis was conducted to evaluate the correlation of these indicators with the radiographic progression. Receiver operating characteristic (ROC) analysis was used to evaluate these indicators' prediction performance. RESULTS: The volume of sclerotic bone and the BMD grew with disease duration, but the volume of soft tissue decrease. The logistic regression analysis found that the volume of sclerotic bone and the BMD were statistically associated with radiographic progression. The ROC analysis found that the regression model, which integrated the volume of sclerotic bone and the BMD, had satisfactory performance in predicting radiographic progression. CONCLUSION: The present study suggested a dynamic evolution of the osseous structure and a dynamic variation trend of the collapse risk in ONFH. The volume of sclerotic bone and the BMD might serve as further prognostic indicators when estimating the collapse risk.


Asunto(s)
Necrosis de la Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/patología , Tomografía Computarizada por Rayos X/métodos , Adulto , Biomarcadores/metabolismo , Densidad Ósea , Progresión de la Enfermedad , Femenino , Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/patología , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC , Estudios Retrospectivos , Riesgo
12.
Front Neurosci ; 8: 67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782699

RESUMEN

As part of fMRI data analysis, the pyhrf package provides a set of tools for addressing the two main issues involved in intra-subject fMRI data analysis: (1) the localization of cerebral regions that elicit evoked activity and (2) the estimation of activation dynamics also known as Hemodynamic Response Function (HRF) recovery. To tackle these two problems, pyhrf implements the Joint Detection-Estimation framework (JDE) which recovers parcel-level HRFs and embeds an adaptive spatio-temporal regularization scheme of activation maps. With respect to the sole detection issue (1), the classical voxelwise GLM procedure is also available through nipy, whereas Finite Impulse Response (FIR) and temporally regularized FIR models are concerned with HRF estimation (2) and are specifically implemented in pyhrf. Several parcellation tools are also integrated such as spatial and functional clustering. Parcellations may be used for spatial averaging prior to FIR/RFIR analysis or to specify the spatial support of the HRF estimates in the JDE approach. These analysis procedures can be applied either to volume-based data sets or to data projected onto the cortical surface. For validation purpose, this package is shipped with artificial and real fMRI data sets, which are used in this paper to compare the outcome of the different available approaches. The artificial fMRI data generator is also described to illustrate how to simulate different activation configurations, HRF shapes or nuisance components. To cope with the high computational needs for inference, pyhrf handles distributing computing by exploiting cluster units as well as multi-core machines. Finally, a dedicated viewer is presented, which handles n-dimensional images and provides suitable features to explore whole brain hemodynamics (time series, maps, ROI mask overlay).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA