Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199763

RESUMEN

BACKGROUND: Diffusion-weighted imaging (DWI), a pivotal component of multiparametric magnetic resonance imaging (mpMRI), plays a pivotal role in the detection, diagnosis, and evaluation of gastric cancer. Despite its potential, DWI is often marred by substantial anatomical distortions and sensitivity artifacts, which can hinder its practical utility. Presently, enhancing DWI's image quality necessitates reliance on cutting-edge hardware and extended scanning durations. The development of a rapid technique that optimally balances shortened acquisition time with improved image quality would have substantial clinical relevance. OBJECTIVES: This study aims to construct and evaluate the unsupervised learning framework called attention dual contrast vision transformer cyclegan (ADCVCGAN) for enhancing image quality and reducing scanning time in gastric DWI. METHODS: The ADCVCGAN framework, proposed in this study, employs high b-value DWI (b = 1200 s/mm2) as a reference for generating synthetic b-value DWI (s-DWI) from acquired lower b-value DWI (a-DWI, b = 800 s/mm2). Specifically, ADCVCGAN incorporates an attention mechanism CBAM module into the CycleGAN generator to enhance feature extraction from the input a-DWI in both the channel and spatial dimensions. Subsequently, a vision transformer module, based on the U-net framework, is introduced to refine detailed features, aiming to produce s-DWI with image quality comparable to that of b-DWI. Finally, images from the source domain are added as negative samples to the discriminator, encouraging the discriminator to steer the generator towards synthesizing images distant from the source domain in the latent space, with the goal of generating more realistic s-DWI. The image quality of the s-DWI is quantitatively assessed using metrics such as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), mean squared error (MSE), weighted peak signal-to-noise ratio (WPSNR), and weighted mean squared error (WMSE). Subjective evaluations of different DWI images were conducted using the Wilcoxon signed-rank test. The reproducibility and consistency of b-ADC and s-ADC, calculated from b-DWI and s-DWI, respectively, were assessed using the intraclass correlation coefficient (ICC). A statistical significance level of p < 0.05 was considered. RESULTS: The s-DWI generated by the unsupervised learning framework ADCVCGAN scored significantly higher than a-DWI in quantitative metrics such as PSNR, SSIM, FSIM, MSE, WPSNR, and WMSE, with statistical significance (p < 0.001). This performance is comparable to the optimal level achieved by the latest synthetic algorithms. Subjective scores for lesion visibility, image anatomical details, image distortion, and overall image quality were significantly higher for s-DWI and b-DWI compared to a-DWI (p < 0.001). At the same time, there was no significant difference between the scores of s-DWI and b-DWI (p > 0.05). The consistency of b-ADC and s-ADC readings was comparable among different readers (ICC: b-ADC 0.87-0.90; s-ADC 0.88-0.89, respectively). The repeatability of b-ADC and s-ADC readings by the same reader was also comparable (Reader1 ICC: b-ADC 0.85-0.86, s-ADC 0.85-0.93; Reader2 ICC: b-ADC 0.86-0.87, s-ADC 0.89-0.92, respectively). CONCLUSIONS: ADCVCGAN shows excellent promise in generating gastric cancer DWI images. It effectively reduces scanning time, improves image quality, and ensures the authenticity of s-DWI images and their s-ADC values, thus providing a basis for assisting clinical decision making.

2.
J Med Imaging (Bellingham) ; 11(4): 044008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39185475

RESUMEN

Purpose: In brain diffusion magnetic resonance imaging (dMRI), the volumetric and bundle analyses of whole-brain tissue microstructure and connectivity can be severely impeded by an incomplete field of view (FOV). We aim to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete FOV. We hypothesize that the imputed image with a complete FOV can improve whole-brain tractography for corrupted data with an incomplete FOV. Therefore, our approach provides a desirable alternative to discarding the valuable brain dMRI data, enabling subsequent tractography analyses that would otherwise be challenging or unattainable with corrupted data. Approach: We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with an incomplete FOV. The model is capable of learning both the diffusion characteristics in diffusion-weighted images (DWIs) and the anatomical features evident in the corresponding structural images for efficiently imputing missing slices of DWIs in the incomplete part of the FOV. Results: For evaluating the imputed slices, on the Wisconsin Registry for Alzheimer's Prevention (WRAP) dataset, the proposed framework achieved PSNR b 0 = 22.397 , SSIM b 0 = 0.905 , PSNR b 1300 = 22.479 , and SSIM b 1300 = 0.893 ; on the National Alzheimer's Coordinating Center (NACC) dataset, it achieved PSNR b 0 = 21.304 , SSIM b 0 = 0.892 , PSNR b 1300 = 21.599 , and SSIM b 1300 = 0.877 . The proposed framework improved the tractography accuracy, as demonstrated by an increased average Dice score for 72 tracts ( p < 0.001 ) on both the WRAP and NACC datasets. Conclusions: Results suggest that the proposed framework achieved sufficient imputation performance in brain dMRI data with an incomplete FOV for improving whole-brain tractography, thereby repairing the corrupted data. Our approach achieved more accurate whole-brain tractography results with an extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's disease.

3.
Biomed Phys Eng Express ; 10(6)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39178886

RESUMEN

Some pathologies such as cancer and dementia require multiple imaging modalities to fully diagnose and assess the extent of the disease. Magnetic resonance imaging offers this kind of polyvalence, but examinations take time and can require contrast agent injection. The flexible synthesis of these imaging sequences based on the available ones for a given patient could help reduce scan times or circumvent the need for contrast agent injection. In this work, we propose a deep learning architecture that can perform the synthesis of all missing imaging sequences from any subset of available images. The network is trained adversarially, with the generator consisting of parallel 3D U-Net encoders and decoders that optimally combines their multi-resolution representations with a fusion operation learned by an attention network trained conjointly with the generator network. We compare our synthesis performance with 3D networks using other types of fusion and a comparable number of trainable parameters, such as the mean/variance fusion. In all synthesis scenarios except one, the synthesis performance of the network using attention-guided fusion was better than the other fusion schemes. We also inspect the encoded representations and the attention network outputs to gain insights into the synthesis process, and uncover desirable behaviors such as prioritization of specific modalities, flexible construction of the representation when important modalities are missing, and modalities being selected in regions where they carry sequence-specific information. This work suggests that a better construction of the latent representation space in hetero-modal networks can be achieved by using an attention network.


Asunto(s)
Medios de Contraste , Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos
4.
Med Image Anal ; 97: 103276, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068830

RESUMEN

Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (≥0.87/0.90) and gamma pass rates for photon (≥98.1%/99.0%) and proton (≥97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Imagen por Resonancia Magnética , Planificación de la Radioterapia Asistida por Computador , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Dosificación Radioterapéutica , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagen , Radioterapia Guiada por Imagen/métodos
5.
Med Image Anal ; 97: 103246, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38943835

RESUMEN

Accurate instrument segmentation in the endoscopic vision of minimally invasive surgery is challenging due to complex instruments and environments. Deep learning techniques have shown competitive performance in recent years. However, deep learning usually requires a large amount of labeled data to achieve accurate prediction, which poses a significant workload. To alleviate this workload, we propose an active learning-based framework to generate synthetic images for efficient neural network training. In each active learning iteration, a small number of informative unlabeled images are first queried by active learning and manually labeled. Next, synthetic images are generated based on these selected images. The instruments and backgrounds are cropped out and randomly combined with blending and fusion near the boundary. The proposed method leverages the advantage of both active learning and synthetic images. The effectiveness of the proposed method is validated on two sinus surgery datasets and one intraabdominal surgery dataset. The results indicate a considerable performance improvement, especially when the size of the annotated dataset is small. All the code is open-sourced at: https://github.com/HaonanPeng/active_syn_generator.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Instrumentos Quirúrgicos , Procedimientos Quirúrgicos Mínimamente Invasivos , Endoscopía
6.
Comput Biol Med ; 172: 108296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493600

RESUMEN

PET/CT devices typically use CT images for PET attenuation correction, leading to additional radiation exposure. Alternatively, in a standalone PET imaging system, attenuation and scatter correction cannot be performed due to the absence of CT images. Therefore, it is necessary to explore methods for generating pseudo-CT images from PET images. However, traditional PET-to-CT synthesis models encounter conflicts in multi-objective optimization, leading to disparities between synthetic and real images in overall structure and texture. To address this issue, we propose a staged image generation model. Firstly, we construct a dual-stage generator, which synthesizes the overall structure and texture details of images by decomposing optimization objectives and employing multiple loss functions constraints. Additionally, in each generator, we employ improved deep perceptual skip connections, which utilize cross-layer information interaction and deep perceptual selection to effectively and selectively leverage multi-level deep information and avoid interference from redundant information. Finally, we construct a context-aware local discriminator, which integrates context information and extracts local features to generate fine local details of images and reasonably maintain the overall coherence of the images. Experimental results demonstrate that our approach outperforms other methods, with SSIM, PSNR, and FID metrics reaching 0.8993, 29.6108, and 29.7489, respectively, achieving the state-of-the-art. Furthermore, we conduct visual experiments on the synthesized pseudo-CT images in terms of image structure and texture. The results indicate that the pseudo-CT images synthesized in this study are more similar to real CT images, providing accurate structure information for clinical disease analysis and lesion localization.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Exposición a la Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética
7.
BMC Med Imaging ; 24(1): 47, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373915

RESUMEN

BACKGROUND: Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) plays an important role in the diagnosis and treatment of breast cancer. However, obtaining complete eight temporal images of DCE-MRI requires a long scanning time, which causes patients' discomfort in the scanning process. Therefore, to reduce the time, the multi temporal feature fusing neural network with Co-attention (MTFN) is proposed to generate the eighth temporal images of DCE-MRI, which enables the acquisition of DCE-MRI images without scanning. In order to reduce the time, multi-temporal feature fusion cooperative attention mechanism neural network (MTFN) is proposed to generate the eighth temporal images of DCE-MRI, which enables DCE-MRI image acquisition without scanning. METHODS: In this paper, we propose multi temporal feature fusing neural network with Co-attention (MTFN) for DCE-MRI Synthesis, in which the Co-attention module can fully fuse the features of the first and third temporal image to obtain the hybrid features. The Co-attention explore long-range dependencies, not just relationships between pixels. Therefore, the hybrid features are more helpful to generate the eighth temporal images. RESULTS: We conduct experiments on the private breast DCE-MRI dataset from hospitals and the multi modal Brain Tumor Segmentation Challenge2018 dataset (BraTs2018). Compared with existing methods, the experimental results of our method show the improvement and our method can generate more realistic images. In the meanwhile, we also use synthetic images to classify the molecular typing of breast cancer that the accuracy on the original eighth time-series images and the generated images are 89.53% and 92.46%, which have been improved by about 3%, and the classification results verify the practicability of the synthetic images. CONCLUSIONS: The results of subjective evaluation and objective image quality evaluation indicators show the effectiveness of our method, which can obtain comprehensive and useful information. The improvement of classification accuracy proves that the images generated by our method are practical.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Humanos , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Mama/patología , Neoplasias de la Mama/patología , Procesamiento de Imagen Asistido por Computador
8.
Comput Methods Programs Biomed ; 245: 108007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241802

RESUMEN

Purpose To minimize the various errors introduced by image-guided radiotherapy (IGRT) in the application of esophageal cancer treatment, this study proposes a novel technique based on the 'CBCT-only' mode of pseudo-medical image guidance. Methods The framework of this technology consists of two pseudo-medical image synthesis models in the CBCT→CT and the CT→PET direction. The former utilizes a dual-domain parallel deep learning model called AWM-PNet, which incorporates attention waning mechanisms. This model effectively suppresses artifacts in CBCT images in both the sinogram and spatial domains while efficiently capturing important image features and contextual information. The latter leverages tumor location and shape information provided by clinical experts. It introduces a PRAM-GAN model based on a prior region aware mechanism to establish a non-linear mapping relationship between CT and PET image domains.  As a result, it enables the generation of pseudo-PET images that meet the clinical requirements for radiotherapy. Results The NRMSE and multi-scale SSIM (MS-SSIM) were utilized to evaluate the test set, and the results were presented as median values with lower quartile and upper quartile ranges. For the AWM-PNet model, the NRMSE and MS-SSIM values were 0.0218 (0.0143, 0.0255) and 0.9325 (0.9141, 0.9410), respectively. The PRAM-GAN model produced NRMSE and MS-SSIM values of 0.0404 (0.0356, 0.0476) and 0.9154 (0.8971, 0.9294), respectively. Statistical analysis revealed significant differences (p < 0.05) between these models and others. The numerical results of dose metrics, including D98 %, Dmean, and D2 %, validated the accuracy of HU values in the pseudo-CT images synthesized by the AWM-PNet. Furthermore, the Dice coefficient results confirmed statistically significant differences (p < 0.05) in GTV delineation between the pseudo-PET images synthesized using the PRAM-GAN model and other compared methods. Conclusion The AWM-PNet and PRAM-GAN models have the capability to generate accurate pseudo-CT and pseudo-PET images, respectively. The pseudo-image-guided technique based on the 'CBCT-only' mode shows promising prospects for application in esophageal cancer radiotherapy.


Asunto(s)
Neoplasias Esofágicas , Tumores Neuroectodérmicos Primitivos , Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/radioterapia , Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos
9.
Comput Med Imaging Graph ; 112: 102325, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38228021

RESUMEN

Automatic brain segmentation of magnetic resonance images (MRIs) from severe traumatic brain injury (sTBI) patients is critical for brain abnormality assessments and brain network analysis. Construction of sTBI brain segmentation model requires manually annotated MR scans of sTBI patients, which becomes a challenging problem as it is quite impractical to implement sufficient annotations for sTBI images with large deformations and lesion erosion. Data augmentation techniques can be applied to alleviate the issue of limited training samples. However, conventional data augmentation strategies such as spatial and intensity transformation are unable to synthesize the deformation and lesions in traumatic brains, which limits the performance of the subsequent segmentation task. To address these issues, we propose a novel medical image inpainting model named sTBI-GAN to synthesize labeled sTBI MR scans by adversarial inpainting. The main strength of our sTBI-GAN method is that it can generate sTBI images and corresponding labels simultaneously, which has not been achieved in previous inpainting methods for medical images. We first generate the inpainted image under the guidance of edge information following a coarse-to-fine manner, and then the synthesized MR image is used as the prior for label inpainting. Furthermore, we introduce a registration-based template augmentation pipeline to increase the diversity of the synthesized image pairs and enhance the capacity of data augmentation. Experimental results show that the proposed sTBI-GAN method can synthesize high-quality labeled sTBI images, which greatly improves the 2D and 3D traumatic brain segmentation performance compared with the alternatives. Code is available at .


Asunto(s)
Encefalopatías , Lesiones Traumáticas del Encéfalo , Humanos , Aprendizaje , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador
10.
Med Image Anal ; 92: 103046, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052145

RESUMEN

Medical image synthesis represents a critical area of research in clinical decision-making, aiming to overcome the challenges associated with acquiring multiple image modalities for an accurate clinical workflow. This approach proves beneficial in estimating an image of a desired modality from a given source modality among the most common medical imaging contrasts, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). However, translating between two image modalities presents difficulties due to the complex and non-linear domain mappings. Deep learning-based generative modelling has exhibited superior performance in synthetic image contrast applications compared to conventional image synthesis methods. This survey comprehensively reviews deep learning-based medical imaging translation from 2018 to 2023 on pseudo-CT, synthetic MR, and synthetic PET. We provide an overview of synthetic contrasts in medical imaging and the most frequently employed deep learning networks for medical image synthesis. Additionally, we conduct a detailed analysis of each synthesis method, focusing on their diverse model designs based on input domains and network architectures. We also analyse novel network architectures, ranging from conventional CNNs to the recent Transformer and Diffusion models. This analysis includes comparing loss functions, available datasets and anatomical regions, and image quality assessments and performance in other downstream tasks. Finally, we discuss the challenges and identify solutions within the literature, suggesting possible future directions. We hope that the insights offered in this survey paper will serve as a valuable roadmap for researchers in the field of medical image synthesis.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética
11.
Front Oncol ; 13: 1282536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125949

RESUMEN

Elastography Ultrasound provides elasticity information of the tissues, which is crucial for understanding the density and texture, allowing for the diagnosis of different medical conditions such as fibrosis and cancer. In the current medical imaging scenario, elastograms for B-mode Ultrasound are restricted to well-equipped hospitals, making the modality unavailable for pocket ultrasound. To highlight the recent progress in elastogram synthesis, this article performs a critical review of generative adversarial network (GAN) methodology for elastogram generation from B-mode Ultrasound images. Along with a brief overview of cutting-edge medical image synthesis, the article highlights the contribution of the GAN framework in light of its impact and thoroughly analyzes the results to validate whether the existing challenges have been effectively addressed. Specifically, This article highlights that GANs can successfully generate accurate elastograms for deep-seated breast tumors (without having artifacts) and improve diagnostic effectiveness for pocket US. Furthermore, the results of the GAN framework are thoroughly analyzed by considering the quantitative metrics, visual evaluations, and cancer diagnostic accuracy. Finally, essential unaddressed challenges that lie at the intersection of elastography and GANs are presented, and a few future directions are shared for the elastogram synthesis research.

12.
Med Image Anal ; 90: 102937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37672901

RESUMEN

Weakly-supervised learning (WSL) has been proposed to alleviate the conflict between data annotation cost and model performance through employing sparsely-grained (i.e., point-, box-, scribble-wise) supervision and has shown promising performance, particularly in the image segmentation field. However, it is still a very challenging task due to the limited supervision, especially when only a small number of labeled samples are available. Additionally, almost all existing WSL segmentation methods are designed for star-convex structures which are very different from curvilinear structures such as vessels and nerves. In this paper, we propose a novel sparsely annotated segmentation framework for curvilinear structures, named YoloCurvSeg. A very essential component of YoloCurvSeg is image synthesis. Specifically, a background generator delivers image backgrounds that closely match the real distributions through inpainting dilated skeletons. The extracted backgrounds are then combined with randomly emulated curves generated by a Space Colonization Algorithm-based foreground generator and through a multilayer patch-wise contrastive learning synthesizer. In this way, a synthetic dataset with both images and curve segmentation labels is obtained, at the cost of only one or a few noisy skeleton annotations. Finally, a segmenter is trained with the generated dataset and possibly an unlabeled dataset. The proposed YoloCurvSeg is evaluated on four publicly available datasets (OCTA500, CORN, DRIVE and CHASEDB1) and the results show that YoloCurvSeg outperforms state-of-the-art WSL segmentation methods by large margins. With only one noisy skeleton annotation (respectively 0.14%, 0.03%, 1.40%, and 0.65% of the full annotation), YoloCurvSeg achieves more than 97% of the fully-supervised performance on each dataset. Code and datasets will be released at https://github.com/llmir/YoloCurvSeg.

13.
J Appl Clin Med Phys ; 24(12): e14120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37552487

RESUMEN

Recent studies have raised broad safety and health concerns about using of gadolinium contrast agents during magnetic resonance imaging (MRI) to enhance identification of active tumors. In this paper, we developed a deep learning-based method for three-dimensional (3D) contrast-enhanced T1-weighted (T1) image synthesis from contrast-free image(s). The MR images of 1251 patients with glioma from the RSNA-ASNR-MICCAI BraTS Challenge 2021 dataset were used in this study. A 3D dense-dilated residual U-Net (DD-Res U-Net) was developed for contrast-enhanced T1 image synthesis from contrast-free image(s). The model was trained on a randomly split training set (n = 800) using a customized loss function and validated on a validation set (n = 200) to improve its generalizability. The generated images were quantitatively assessed against the ground-truth on a test set (n = 251) using the mean absolute error (MAE), mean-squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM), normalized mutual information (NMI), and Hausdorff distance (HDD) metrics. We also performed a qualitative visual similarity assessment between the synthetic and ground-truth images. The effectiveness of the proposed model was compared with a 3D U-Net baseline model and existing deep learning-based methods in the literature. Our proposed DD-Res U-Net model achieved promising performance for contrast-enhanced T1 synthesis in both quantitative metrics and perceptual evaluation on the test set (n = 251). Analysis of results on the whole brain region showed a PSNR (in dB) of 29.882 ± 5.924, a SSIM of 0.901 ± 0.071, a MAE of 0.018 ± 0.013, a MSE of 0.002 ± 0.002, a HDD of 2.329 ± 9.623, and a NMI of 1.352 ± 0.091 when using only T1 as input; and a PSNR (in dB) of 30.284 ± 4.934, a SSIM of 0.915 ± 0.063, a MAE of 0.017 ± 0.013, a MSE of 0.001 ± 0.002, a HDD of 1.323 ± 3.551, and a NMI of 1.364 ± 0.089 when combining T1 with other MRI sequences. Compared to the U-Net baseline model, our model revealed superior performance. Our model demonstrated excellent capability in generating synthetic contrast-enhanced T1 images from contrast-free MR image(s) of the whole brain region when using multiple contrast-free images as input. Without incorporating tumor mask information during network training, its performance was inferior in the tumor regions compared to the whole brain which requires further improvements to replace the gadolinium administration in neuro-oncology.


Asunto(s)
Gadolinio , Neoplasias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo
15.
Comput Med Imaging Graph ; 108: 102249, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37290374

RESUMEN

Magnetic resonance (MR) and computer tomography (CT) images are two typical types of medical images that provide mutually-complementary information for accurate clinical diagnosis and treatment. However, obtaining both images may be limited due to some considerations such as cost, radiation dose and modality missing. Recently, medical image synthesis has aroused gaining research interest to cope with this limitation. In this paper, we propose a bidirectional learning model, denoted as dual contrast cycleGAN (DC-cycleGAN), to synthesize medical images from unpaired data. Specifically, a dual contrast loss is introduced into the discriminators to indirectly build constraints between real source and synthetic images by taking advantage of samples from the source domain as negative samples and enforce the synthetic images to fall far away from the source domain. In addition, cross-entropy and structural similarity index (SSIM) are integrated into the DC-cycleGAN in order to consider both the luminance and structure of samples when synthesizing images. The experimental results indicate that DC-cycleGAN is able to produce promising results as compared with other cycleGAN-based medical image synthesis methods such as cycleGAN, RegGAN, DualGAN, and NiceGAN. Code is available at https://github.com/JiayuanWang-JW/DC-cycleGAN.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Computadores , Espectroscopía de Resonancia Magnética
16.
Med Image Anal ; 88: 102851, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329854

RESUMEN

Self-training is an important class of unsupervised domain adaptation (UDA) approaches that are used to mitigate the problem of domain shift, when applying knowledge learned from a labeled source domain to unlabeled and heterogeneous target domains. While self-training-based UDA has shown considerable promise on discriminative tasks, including classification and segmentation, through reliable pseudo-label filtering based on the maximum softmax probability, there is a paucity of prior work on self-training-based UDA for generative tasks, including image modality translation. To fill this gap, in this work, we seek to develop a generative self-training (GST) framework for domain adaptive image translation with continuous value prediction and regression objectives. Specifically, we quantify both aleatoric and epistemic uncertainties within our GST using variational Bayes learning to measure the reliability of synthesized data. We also introduce a self-attention scheme that de-emphasizes the background region to prevent it from dominating the training process. The adaptation is then carried out by an alternating optimization scheme with target domain supervision that focuses attention on the regions with reliable pseudo-labels. We evaluated our framework on two cross-scanner/center, inter-subject translation tasks, including tagged-to-cine magnetic resonance (MR) image translation and T1-weighted MR-to-fractional anisotropy translation. Extensive validations with unpaired target domain data showed that our GST yielded superior synthesis performance in comparison to adversarial training UDA methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje , Humanos , Teorema de Bayes , Reproducibilidad de los Resultados , Anisotropía , Incertidumbre
17.
Med Image Anal ; 87: 102814, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196537

RESUMEN

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.


Asunto(s)
Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos
18.
Phys Med Biol ; 68(10)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015231

RESUMEN

Objective. Artificial intelligence (AI) methods have gained popularity in medical imaging research. The size and scope of the training image datasets needed for successful AI model deployment does not always have the desired scale. In this paper, we introduce a medical image synthesis framework aimed at addressing the challenge of limited training datasets for AI models.Approach. The proposed 2D image synthesis framework is based on a diffusion model using a Swin-transformer-based network. This model consists of a forward Gaussian noise process and a reverse process using the transformer-based diffusion model for denoising. Training data includes four image datasets: chest x-rays, heart MRI, pelvic CT, and abdomen CT. We evaluated the authenticity, quality, and diversity of the synthetic images using visual Turing assessments conducted by three medical physicists, and four quantitative evaluations: the Inception score (IS), Fréchet Inception Distance score (FID), feature similarity and diversity score (DS, indicating diversity similarity) between the synthetic and true images. To leverage the framework value for training AI models, we conducted COVID-19 classification tasks using real images, synthetic images, and mixtures of both images.Main results. Visual Turing assessments showed an average accuracy of 0.64 (accuracy converging to50%indicates a better realistic visual appearance of the synthetic images), sensitivity of 0.79, and specificity of 0.50. Average quantitative accuracy obtained from all datasets were IS = 2.28, FID = 37.27, FDS = 0.20, and DS = 0.86. For the COVID-19 classification task, the baseline network obtained an accuracy of 0.88 using a pure real dataset, 0.89 using a pure synthetic dataset, and 0.93 using a dataset mixed of real and synthetic data.Significance. A image synthesis framework was demonstrated for medical image synthesis, which can generate high-quality medical images of different imaging modalities with the purpose of supplementing existing training sets for AI model deployment. This method has potential applications in many data-driven medical imaging research.


Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , COVID-19/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Difusión , Modelos Estadísticos , Procesamiento de Imagen Asistido por Computador
19.
Comput Methods Programs Biomed ; 231: 107389, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739625

RESUMEN

BACKGROUND AND OBJECTIVES: Non-contrast CT (NCCT) and contrast-enhanced CT (CECT) are important diagnostic tools with distinct features and applications for chest diseases. We developed two synthesizers for the mutual synthesis of NCCT and CECT and evaluated their applications. METHODS: Two synthesizers (S1 and S2) were proposed based on a generative adversarial network. S1 generated synthetic CECT (SynCECT) from NCCT and S2 generated synthetic NCCT (SynNCCT) from CECT. A new training procedure for synthesizers was proposed. Initially, the synthesizers were pretrained using self-supervised learning (SSL) and dual-energy CT (DECT) and then fine-tuned using the registered NCCT and CECT images. Pulmonary vessel segmentation from NCCT was used as an example to demonstrate the effectiveness of the synthesizers. Two strategies (ST1 and ST2) were proposed for pulmonary vessel segmentation. In ST1, CECT images were used to train a segmentation model (Model-CECT), NCCT images were converted to SynCECT through S1, and SynCECT was input to Model-CECT for testing. In ST2, CECT data were converted to SynNCCT through S2. SynNCCT and CECT-based annotations were used to train an additional model (Model-NCCT), and NCCT was input to Model-NCCT for testing. Three datasets, D1 (40 paired CTs), D2 (14 NCCTs and 14 CECTs), and D3 (49 paired DECTs), were used to evaluate the synthesizers and strategies. RESULTS: For S1, the mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) were 14.60± 2.19, 1644± 890, 34.34± 1.91, and 0.94± 0.02, respectively. For S2, they were 12.52± 2.59, 1460± 922, 35.08± 2.35, and 0.95± 0.02, respectively. Our synthesizers outperformed the counterparts of CycleGAN, Pix2Pix, and Pix2PixHD. The results of ablation studies on SSL pretraining, DECT pretraining, and fine-tuning showed that performance worsened (for example, for S1, MAE increased to 16.53± 3.10, 17.98± 3.10, and 20.57± 3.75, respectively). Model-NCCT and Model-CECT achieved dice similarity coefficients (DSC) of 0.77 and 0.86 on D1 and 0.77 and 0.72 on D2, respectively. CONCLUSIONS: The proposed synthesizers realized mutual and high-quality synthesis between NCCT and CECT images; the training procedures, including SSL pretraining, DECT pretraining, and fine-tuning, were critical to their effectiveness. The results demonstrated the usefulness of synthesizers for pulmonary vessel segmentation from NCCT images.


Asunto(s)
Tórax , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos
20.
Med Image Anal ; 83: 102692, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442293

RESUMEN

Synthesis of computed tomography (CT) images from magnetic resonance (MR) images is an important task to overcome the lack of electron density information in MR-only radiotherapy treatment planning (RTP). Some innovative methods have been proposed for abdominal MR-to-CT synthesis. However, it is still challenging due to the large misalignment between preprocessed abdominal MR and CT images and the insufficient feature information learned by models. Although several studies have used the MR-to-CT synthesis to alleviate the difficulty of multi-modal registration, this misalignment remains unsolved when training the MR-to-CT synthesis model. In this paper, we propose an end-to-end quartet attention aware closed-loop learning (QACL) framework for MR-to-CT synthesis via simultaneous registration. Specifically, the proposed quartet attention generator and mono-modal registration network form a closed-loop to improve the performance of MR-to-CT synthesis via simultaneous registration. In particular, a quartet-attention mechanism is developed to enlarge the receptive fields in networks to extract the long-range and cross-dimension spatial dependencies. Experimental results on two independent abdominal datasets demonstrate that our QACL achieves impressive results with MAE of 55.30±10.59 HU, PSNR of 22.85±1.43 dB, and SSIM of 0.83±0.04 for synthesis, and with Dice of 0.799±0.129 for registration. The proposed QACL outperforms the state-of-the-art MR-to-CT synthesis and multi-modal registration methods.


Asunto(s)
Tomografía Computarizada por Rayos X , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA