Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IBRO Neurosci Rep ; 11: 164-174, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34746914

RESUMEN

Exercise can reduce the incidence of stress-related mental diseases, such as depression and anxiety. Control group was neither exposed to CVMS nor TRE (noCVMS/noTRE). Females were tested and levels of serum17-beta-oestradiol (E2), estrogen receptors α immunoreactive neurons (ERα-IRs), estrogen receptors ß immunoreactive neurons (ERß-IRs) and oxytocin immunoreactive neurons (OT-IRs) were measured. The results showed there's increased anxiety-like behaviors for mice from CVMS/noTRE, CVMS/higher speed TRE (CVMS/HTRE) and noCVMS/HTRE groups when they were put in open field and elevated maze tests. They had lower serum E2 levels than mice from CVMS/low-moderate speed TRE (CVMS/LMTRE), noCVMS/LMTRE and noCVMS/noTRE groups. The three groups of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice had more ERα-IRs and less ERß-IRs in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA), hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). The number of OT-IRs in PVN and SON of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice was also lower than that of mice from CVMS/LMTRE, noCVMS/LMTRE and noCVMS/noTRE groups. Interestingly, CVMS/LMTRE and noCVMS/LMTRE mice were similar to noCVMS/noTRE mice in that they did not show anxiety, while CVMS/HTRE and noCVMS/HTRE mice did not, which were similar to the mice in CVMS/noTRE. We propose that LMTRE instead of HTRE changes the serum concentration of E2. ERß/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behavior in female mice exposed to anxiety-inducing stress conditions.

2.
Biochem Biophys Res Commun ; 472(2): 319-23, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26926566

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes.


Asunto(s)
Encéfalo/metabolismo , Relaciones Materno-Fetales , Microglía/metabolismo , Minociclina/administración & dosificación , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Encéfalo/efectos de los fármacos , Femenino , Masculino , Intercambio Materno-Fetal/efectos de los fármacos , Ratones Noqueados , Microglía/efectos de los fármacos , Embarazo , Receptores de Oxitocina/genética
3.
Auton Neurosci ; 193: 44-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26213356

RESUMEN

The medial amygdaloid nucleus (MeA) is involved in cardiovascular control. In the present study we report the effect of MeA pharmacological ablations caused by bilateral microinjections of the nonselective synaptic blocker CoCl2 on cardiac baroreflex responses in rats. MeA synaptic inhibition evoked by local bilateral microinjection of 100 nL of CoCl2 (1 mM) did not affect blood pressure or heart rate baseline, suggesting no tonic MeA influence on resting cardiovascular parameters. However, 10 min after CoCl2 microinjection into the MeA of male Wistar rats, the reflex bradycardic response evoked by intravenous infusion of phenylephrine was significantly enhanced when compared with the reflex bradycardic response observed before CoCl2. The treatment did not affect the tachycardic responses to the intravenous infusion of sodium nitroprusside (SNP). Baroreflex activity returned to control values 60 min after CoCl2 microinjections, confirming a reversible blockade. The present results indicate an involvement of the MeA in baroreflex modulation, suggesting that synapses in the MeA have an inhibitory influence on the bradycardic component of the baroreflex in conscious rats.


Asunto(s)
Barorreflejo/fisiología , Complejo Nuclear Corticomedial/fisiología , Animales , Barorreflejo/efectos de los fármacos , Bradicardia/fisiopatología , Fármacos del Sistema Nervioso Central/farmacología , Cobalto/farmacología , Estado de Conciencia/fisiología , Complejo Nuclear Corticomedial/efectos de los fármacos , Masculino , Nitroprusiato/farmacología , Ratas Wistar , Taquicardia/fisiopatología , Vasodilatadores/farmacología
4.
Neuroscience ; 257: 49-64, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24211798

RESUMEN

Neonatal handling, an experimental model of early life experiences, is known to affect hypothalamic-pituitary-adrenal (HPA) axis function, thus increasing adaptability, coping with stress, cognitive abilities and in general brain plasticity-related processes. AMPA receptors (AMPARs) mediate fast synaptic transmission at excitatory glutamatergic synapses in the CNS and are crucial during neuronal development, synaptic plasticity and structural remodeling. AMPARs are composed of four types of subunits, designated as AMPA glutamate receptor subunits (GluA1, GluA2, GluA3 and GluA4), which combine to form tetramers. The present study addressed the question of whether neonatal handling (15min daily maternal separation from postnatal day 1 (PND1) to PND21) might have an effect on GluA1-4 mRNA levels in adult rat male and female brain using in situ hybridization. We have identified selective sexually dimorphic effects of neonatal handling on the mRNA expression levels of AMPAR subunits in adult rat hippocampus and nuclei of the amygdaloid complex. In the dorsal hippocampus GluA1 mRNA levels were increased in handled males, while they were decreased in handled female animals. In the ventral hippocampus and the amygdaloid complex GluA2 mRNA was lower in handled females, while no effect was observed in handled males. Furthermore, we observed that neonatal handling induced in both sexes decreases of GluA2 mRNA in the dorsal hippocampus, as well as in the somatosensory and occipital cortex, of GluA3 mRNA in most hippocampal areas, amygdaloid complex and cortical regions studied, and of GluA4 mRNA in the ventral hippocampus. These results show that glutamatergic transmission is markedly affected by an early experience. The neonatal handling-induced alterations in AMPAR subunit composition are in line with the increased brain plasticity, the more effective HPA axis function, and in general the more adaptive behavioral phenotype known to characterize the handled animals.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Manejo Psicológico , Subunidades de Proteína/metabolismo , Receptores AMPA/metabolismo , Diferenciación Sexual/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Femenino , Masculino , Subunidades de Proteína/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores AMPA/genética
5.
Nucl Med Biol ; 40(8): 974-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24035549

RESUMEN

INTRODUCTION: In vivo positron emission tomography (PET) imaging of the serotonin transporter (SERT) is a valuable tool in drug development and in monitoring brain diseases with altered serotonergic function. We have developed a two-step labeling reaction for the preparation of the high serotonin affinity ligand [(18)F]FPBM ([(18)F]2-(2'-((dimethylamino)methyl)-4'-(3-fluoropropoxy)phenylthio)benzenamine, 1). METHOD: To improve and automate the radiolabeling of [(18)F]FPBM, 1, an intermediate, [(18)F]3-fluoropropyltosylate, [(18)F]4, was prepared first, and then it was reacted with the phenol precursor (4-(2-aminophenylthio)-3-((dimethylamino)methyl)phenol, 3) to afford [(18)F]FPBM, 1. To optimize the labeling, this O-alkylation reaction was evaluated under different temperatures, using different bases and varying amounts of precursor 3. The desired product was obtained after a solid phase extraction (SPE) purification. RESULTS: This two-step radiolabeling reaction successfully produced the desired [(18)F]FPBM, 1, with an excellent radiochemical purity (>95%, n = 8). Radiochemical yields were between 31% and 39% (decay corrected, total time of labeling: 70 min, n = 8). The SPE purification cannot completely remove pseudo-carriers in the final dose of [(18)F]FPBM, 1. The concentrations of major pseudo-carriers were measured by UV-HPLC (476-676, 68-95 and 50-71 µg for precursor 3, O-hydroxypropyl and O-allyloxy derivatives, 5 and 6, respectively). To investigate the potential inhibition of SERT binding of these pseudo-carriers, we performed in vitro competition experiments evaluated by autoradiography. Known amounts of 'standard' FPBM, 1, of the pseudo-carriers, 5 and 6, were added to the HPLC-purified [(18)F]1 dose. The inhibition of 'standard' FPBM, 1, binding to the SERT binding sites, using monkey brain sections, were measured (EC50=13, 46, 7.1 and 8.3 nM, respectively for 1, precursor 3, O-hydroxypropyl and O-allyloxy derivative of 3). CONCLUSION: An improved radiolabeling method by a SPE purification for preparation of [(18)F]FPBM, 1, was developed. The results suggest that it is feasible to use this labeling method to prepare [(18)F]FPBM, 1, without affecting in vivo SERT binding.


Asunto(s)
Compuestos de Anilina , Tomografía de Emisión de Positrones/métodos , Receptores de Serotonina/metabolismo , Compuestos de Anilina/química , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Haplorrinos , Radioquímica
6.
Neuroscience ; 253: 67-77, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23999123

RESUMEN

In rodents as well as in many other mammalian and non-mammalian species, the arginine-vasopressin (AVP) system includes a parvocellular sexually dimorphic portion located within the bed nucleus of the stria terminalis (BST), the medial amygdaloid nucleus (MeA) and the lateral septum. In this system, males have more cells and denser projections than females, neurons show androgen and estrogen receptors, and gonadal hormones are required for the activation. However, the role of these hormones for the differentiation of the system is not clear. Previous studies performed on aromatase knockout mice suggested that estradiol is not necessary for the differentiation of the system, but it is important for its activation in adulthood. To elucidate the role of androgens on differentiation and functioning of AVP parvocellular system, we compared male and female rats with a non-functional mutation of androgen receptor (Tfm, testicular feminization mutation) to their control littermates. Our data show that the lack of a functional androgen receptor significantly decreases the expression of AVP immunoreactivity within the BST and MeA of male Tfm. Thus supporting the hypothesis that androgens, through the action of their receptor, should have a relevant role in the organization and modulation of the AVP parvocellular sexually dimorphic system.


Asunto(s)
Síndrome de Resistencia Androgénica/metabolismo , Arginina Vasopresina/metabolismo , Encéfalo/metabolismo , Receptores Androgénicos/deficiencia , Caracteres Sexuales , Análisis de Varianza , Síndrome de Resistencia Androgénica/patología , Animales , Animales Recién Nacidos , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Mutación/genética , Neuronas/patología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA