Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 124986, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39217960

RESUMEN

Near-infrared (NIR) fluorophores have promoted the development of materials for bioimaging, but traditional NIR dyes usually suffer from aggregation-caused quenching (ACQ), impeding their applications. Herein, we propose two difluoroboron ß-diketonate complexes TBO and TBS, consisting a donor-acceptor (D-A) structure with triphenylamine (TPA) moiety as an electron donors and difluoroboron as well as furan or thiophene building block as an electron acceptor. The theoretical calculation and optical data shows that both of them have intramolecular charge transfer (ICT) characteristics. Such ICT characteristics endow them with both solvatochromism and dual-state emission (DSE) properties. In the solvent CH2Cl2, the emission wavelength of TBO ranges from 550 nm to 750 nm, with a low fluorescence quantum yield (Φ = 7.0 %). However, in the less polar solvent hexane, the emission wavelength blue-shifts, with an increased Φ reaching up to 18 %. Moreover, TBO and TBS exhibit mechanochromic characteristics and rare multi-channel fluorescence emission phenomena at solid-state. Their solid-state samples can emit fluorescence in four spectral bands with maximum emission wavelengths at 300 nm, 400 nm, 600 nm, and 770 nm under excitation at 240 nm. These unique optical properties are expected to be utilized for detecting polarity of system and deformation. Moreover, according to the results of cell imaging and flow cytometry, TBO molecular were easily internalized into Hela cells and distributed in the cytoplasm with strong red fluorescence. Therefore, this research inspires more insight into development of NIR luminogens for biomedical imaging.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39285762

RESUMEN

Mechanochromic materials exhibit color changes upon external mechanical stimuli, finding wide-ranging applications in colorimetric sensing, display technology, and anticounterfeiting measures. Many of these materials rely on fluorescence properties and therefore necessitate external optical or electrical excitation. However, for broader applicability, the detection of color changes by the naked eye only or without complicated detection instrumentation is highly desirable. Photonic crystals offer a promising avenue for attaining such performances. In this work, we present elastomeric distributed Bragg reflectors (DBRs) characterized by a series of photonic bandgaps exhibiting mechanochromic response from the near-infrared to the visible wavelengths. To achieve this, we engineered alternating thin films of a thermoplastic fluoropolymer and a styrene-butadiene copolymer using different elastomeric substrates to attain different behaviors. The reported system demonstrates a reversible and instantaneous shift of the photonic bandgaps in response to 100% strain in multiple deformation cycles. Comparing the DBR stress-strain response with the optical strain response confirms a mechanochromic sensitivity of ∼1.7-6.9 nm/% and ∼80 nm/MPa, with an optical Poisson's ratio in the range 0.3-0.7. All these properties are spectrally dependent, as demonstrated by exploiting the properties of different diffraction order photonic band gaps.

3.
Luminescence ; 39(9): e4876, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39192808

RESUMEN

The development of multi-stimuli-responsive (MSR) materials is a tempting yet intriguing challenge due to the absence of a defined design approach. In this study, we designed and synthesised two compounds based on triphenylamine, namely, TPA-Tz1 and TPA-Tz2. The photoluminescent investigations reveal the MSR behaviour of both compounds. TPA-Tz1 shows reversible mechanochromism with a blue-shifted emission due to changes in intermolecular interactions. Furthermore, both compounds exhibit solvatochromism in solvents of varying polarity. Detailed studies suggest that solvatochromism in TPA-Tz1 can be attributed to twisted intramolecular charge transfer (TICT), while in TPA-Tz2, it is due to intramolecular charge transfer (ICT). Additionally, both compounds display acidochromic properties in solution as well as in the solid state due to the protonation of the triazole ring. All changes in emissions are corroborated through theoretical calculations. The results provide insights into the intricate interplay of molecular interactions and structural rearrangements that contribute to the compound's multifaceted responsiveness.


Asunto(s)
Triazoles , Triazoles/química , Estructura Molecular , Compuestos de Anilina/química , Luminiscencia , Aminas/química
4.
Adv Mater ; : e2408192, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155803

RESUMEN

Mechanochromic light control technology that can dynamically regulate solar irradiation is recognized as one of the leading candidates for energy-saving windows. However, the lack of spectrally selective modulation ability still hinders its application for different scenarios or individual needs. Here, inspired by the generation of structure color and color change of living organisms, a simple layer-by-layer assembly approach toward large-area fabricating mechanically responsive film for visible and near-infrared multiwavelength spectral modulation smart windows is reported here. The assembled SiO2 nanoparticles and W18O49 nanowires enable the film with an optical modulation rate of up to 42.4% at the wavelength of 550 nm and 18.4% for the near-infrared region, separately, and the typical composite film under 50% stretching shows ≈41.6% modulation rate at the wavelength of 550 nm with NIR modulation rate less than 2.7%. More importantly, the introduction of the multilayer assembly structure not only optimizes the film's optical modulation but also enables the film with high stability during 100 000 stretching cycles. A cooling effect of 21.3 and 6.9 °C for the blackbody and air inside a model house in the real environmental application is achieved. This approach provides theoretical and technical support for the new mechanochromic energy-saving windows.

5.
Angew Chem Int Ed Engl ; : e202409369, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136230

RESUMEN

Sterically distorted donor-acceptor p­systems, termed DA springs, can be progressively planarized under mechanical load causing a bathochromic shift of the photoluminescence (PL) spectrum. By combining theory and experiment, we here use a simple linear force calibration for two different conformational mechanochromophores to determine molecular forces in polymers from the mechanochromic shift in PL wavelength during multiple uniaxial tensile tests. Two systems are used, i) a highly entangled linear glassy polyphenylene and ii) a covalent elastomeric polydimethylsiloxane network. The mean forces estimated by this method are validated using known threshold forces for the mechanochemical ring-opening reactions of two different spiropyran force probes. The agreement between both approaches underlines that these DA springs provide the unique opportunity for the online monitoring of local molecular forces present in diverse polymer matrices.

6.
ACS Appl Mater Interfaces ; 16(34): 45214-45223, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145439

RESUMEN

The abuse and excessive discharge of organic pollutants such as nitroaromatic compounds (NACs) have become a hot topic of concern for all humanity and society, and the development of fast, effective, and targeted technical means for detecting NACs also faces many challenges. Here, we reported a strontium-based metal-organic framework (MOF) {[Sr2(tcbpe)(H2O)4]}n (Sr-tcbpe), in which tcbpe represents deprotonated 4',4‴,4″‴,4‴‴-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'biphenyl]-4-carboxylic acid)). In Sr-tcbpe, Sr-O polyhedron and deprotonated tcbpe4- ligand have a staggered connection to form a self-assembled three-dimensional network structure. In addition, it is found that Sr-tcbpe undergoes no luminescent color change when grinding under solvent protection, while mechanochromic fluorescence behavior is observed when grinding directly, leading to luminescent color changes from cyan to green (Sr-tcbpe-G). Additionally, Sr-tcbpe and Sr-tcbpe-G could selectively detect PNP, DNP, and TNP, and Sr-tcbpe achieves visual fluorescence sensing detection toward TNP at a limit of detection as low as 2.25 µM. Moreover, during the detection process, unexpectedly, TNP exhibits a selective etching effect on Sr-tcbpe, which could drill nano holes with different sizes on the surface area of MOF materials to a certain extent, achieving the conversion of chemical energy to mechanical energy. In addition, the successful preparation of a portable sensor Sr-tcbpe@gypsum block provides a platform for the perfect combination of mechanochromic fluorescence behavior and visualization detection toward TNP. It lays the foundation for the practical application of MOF materials in daily life.

7.
Angew Chem Int Ed Engl ; : e202411629, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966872

RESUMEN

Mechanochromic functionality realized via the force-responsive mechanophores in polymers has great potential for damage sensing and information storage. Mechanophores with the ability to recognize multiple stimuli for tunable chromic characteristics are highly sought after for versatile sensing ability and color programmability. Nevertheless, the majority of mechanophores are based on single-component chromophores with limited sensitivity, or require additional fabrication technology for multi-modal chromism. Here, we report a novel multifunctional mechanophore capable of vividly detectable and tunable mechanochromism in polymers. This synergistic optical coupling relies on strategically fusing rhodamine and spiropyran (Rh-SP), and tethering polymer chains on both subunits. The mechanochromic behaviors of the Rh-SP-linked polymers under sonication and compression are thoroughly evaluated in response to changes in force and the light-controlled relaxation process. Non-sequential ring-opening of the two subunits under force is identified, endowing high-contrast mechanochromism. Light-induced differential ring-closing reactions of the two subunits, together with the acidichromism of the SP moiety, are employed to engineer elastomers with programmable and wide-spectrum colors. Our work presents an effective strategy for highly appreciable and regulable mechanochromic functionality, and also provides new insights into the rupture mechanisms of π-fused mechanophores, as well as how the stimuli history controls stress accumulation in polymers.

8.
Chemistry ; : e202402257, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955898

RESUMEN

Boron-doped helicenes, known for their unique electronic and photophysical properties, are of great interest for numerous applications. This research introduces two new azabora[6]helicenes, H[6]BN1 and H[6]BN2, synthesized through an efficient method. These molecules have boron and nitrogen atoms in opposing positions, enhancing their distinctive attributes. Both helicenes show excellent emission properties, with H[6]BN1 and H[6]BN2 exhibiting narrowband blue fluorescence and circularly polarized luminescence (CPL), achieving glum values of 4~5×10-4 which is beneficial for chiroptical applications. The addition of a donor group, 3, 6-di-tert-butyl-9H-carbazole, in H[6]BN2 improves luminescence, likely due to enhanced molecular orbital overlap and electron delocalization. H[6]BN1's needle-like single crystals exhibit mechanochromism, changing luminescent color from yellow to green under mechanical stress, which is promising for stimulus-responsive materials. In conclusion, this study presents a novel class of BN[6]helicenes with superior chiroptical properties. Their combination of electronic features and mechanochromism makes them ideal for advanced chiroptical materials, expanding the potential of helicene-based compounds and offering new directions for the synthesis of molecules with specific chiroptical characteristics.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124676, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38909400

RESUMEN

Five series of cyanostilbene-based rod-like liquid crystals containing one different terminal atom (H, F, Cl, Br and I) at one end and one terminal aliphatic chain with different numbers of carbon atoms at the other end were reported by Suzuki coupling and Knoevenagel reactions. The influence of terminal halogen atoms and terminal chain length on the self-assembly, AIE behavior, temperature-dependent emission and mechanochromism behavior was explored by POM, DSC, XRD, SEM, absorption spectra and emission spectra. All the compounds are enantiotropic liquid crystals. The lowest non-halogen substituted homologue exhibited solo N phase, but the higher non-halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature. All the lowest halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature and all the higher homologues only exhibited SmA. The distinct mesogenic phase transition could be attributed to the intermolecular interaction produced by terminal halogen and the rigidity of the terminal aliphatic chain. All the non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom) exhibited AIE behaviors, whereas the iodinated compounds exhibited extremely weak emission in solution and aggregated states due to the heavy atoms effect. These compounds also exhibited distinct solid-state emission with blue or cyan fluorescence, which could be quenched by increasing temperature. The reversible mechanochromism behavior was also achieved in all the compounds. The mechanical force induced quench in emission in non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom), whereas enhancement in iodinated compounds. The reversible mechanochromism behavior endowed these compounds with potential applications in rewritable paper and anti-counterfeiting. The interesting properties in these liquid crystals would be attributed to the balance of the halogen-halogen interactions, heavy atom effect, steric-hindrance effect and chain length. These investigations would be helpful to understand the relationship between chemical structures and properties.

10.
Adv Mater ; : e2404396, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877780

RESUMEN

Photonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid-crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation. Despite this advantage, the development of 2D photonic periodic structures using LC materials is limited to a few colloidal nanodisk liquid crystals. Herein, 2D photonic colloidal liquid crystals composed of biomineral-based nanorods and water is reported. The soft photonic materials with 2D structure by self-assembled LC colloidal nanorods are unique and a new class of photonic materials different from conventional solid 2D photonic materials. These colloids exhibit bright structural colors with high reflectance (>50%) and significant angular dependency. The structural colors are adjusted by controlling the concentration and size of the LC colloidal nanorods. Furthermore, mechanochromic hydrogel thin films with 2D photonic structure are developed. The hydrogels exhibit reversible mechanochromic properties with angular dependency, which can be used for an advanced stimuli responsible sensor.

11.
ACS Nano ; 18(20): 13346-13360, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726755

RESUMEN

Photonic elastomers, capable of converting imperceptible deformations into visible colors, show significant potential in smart materials. However, instantaneous deformation is arduous to record accurately due to the disappearance of optical information after deformation recovery. Herein, inspired by the folding structures of iridocytes in cephalopods, a stress- and moisture-triggered wrinkling and erasure effect is proposed to be introduced in the construction of a photonic elastomer. Implemented in a dual-network polymer framework with modulatable locking, it allows for reversible deformation storage. The photonic elastomer comprises a surface one-dimensional photonic crystal (1DPC) and a poly(dimethylsiloxane) (PDMS) substrate. The deformed 1DPC lattice transforms into a wrinkled state due to a substrate deformation mismatch, preserving strain-induced structural color information through interchain hydrogen bonding and crystalline shape-locking in dual-network polymers. Reading the color provides multidimensional information about the instantaneous deformation degree and distribution. Moreover, the moisture-induced shape-memory feature of the 1DPC can be triggered with a minute amount of water, like fingertip perspiration or humidity change (35% to 80%), to restore the original color. This stress/moisture-responsive photonic elastomer, with its dynamically reconfigurable wrinkle-lattice, holds great promise for applications in mechanical sensing, inkless writing, and anticounterfeiting, significantly enhancing the versatility of photonic materials.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124449, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754206

RESUMEN

To explore the intrinsic mechanism of pure organic room temperature and clustering-induced phosphorescence and investigate mechanochromism and structural-function relationships, here, 4-(2-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lo-CzAD), 4-(3-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lm-CzAD), and 4-(4-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lp-CzAD) were designed and synthesized by choosing self-made carbazole and 3, 5-dicyanopyridine (DCP) unit as electron acceptor and electron donor in sequence. Compared with crystals Lm-CzAD and Lp-CzAD, crystal Lo-CzAD shows better room temperature phosphorescence (RTP) performance, with RTP lifetimes of 187.16 ms, as well as afterglows 1s, which are attributed to twisted carbazole unit and donor-acceptor (D-A) molecular conformation, big crystal density and spin orbit coupling constant ξ (S1 â†’ T1 and S1 â†’ T2), as well as intermolecular H type stacking and small ξ (S0 â†’ T1). By choosing urea and PPh3 as host materials and tuning doping ratio, four doping systems were successfully constructed, significantly improving RTP performance of Lo-CzAD and Lp-CzAD, as well as showing different fluorescence and RTP. The lifetimes and afterglows of pure organic Urea/Lo-CzAD and Urea/Lp-CzAD systems are up to 478.42 ms, 5 s, 261.66 ms and 4.5 s in turn. Moreover, Lo-CzAD and Lp-CzAD show time-dependent RTP in doping systems due to monomer and aggregate dispersion, as well as clustering-induced phosphorescence. Based on the different luminescent properties, multiple information encryptions were successfully constructed.

13.
Macromol Rapid Commun ; 45(16): e2400145, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776530

RESUMEN

Mechanochromic materials have received broad research interests recently, owing to its ability to monitor the in situ stress/strain in polymer materials in a straightforward way. However, one major setback that hinders the practical application of these materials is their low sensitivity toward tensile strain. Here a new strategy for pre-stretching of the mechanochromic agent in a polymer film on the molecular scale, which can effectively enhance the mechanochromic sensitivity of a polymer film toward tensile strain, is shown. In situ fluorescent measurement during tensile test shows an early activation of the mechanochromic agent at tensile strain as low as 50%. The pre-stretching effect is realized by first inducing ring-opening of the mechanochromic agent by molecular functionalization, and then compelling the ring-closure process in the cured film by elevated temperature. This post-curing ring-closure process will result in pre-stretched mechanochromic agent in a crosslinked network. The mechanism for mechanochromic activation of polymer films with different composition is elaborated by visco-elastic measurements, and the effect of pre-stretching is further confirmed by films with other compositions. Combined with the simplicity of the method developed, this work could offer an alternative strategy to enhance the sensitivity of different mechanochromic agents toward tensile strain.


Asunto(s)
Polímeros , Resistencia a la Tracción , Polímeros/química , Estructura Molecular , Estrés Mecánico
14.
Angew Chem Int Ed Engl ; 63(22): e202404202, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38525500

RESUMEN

Endowing perovskite quantum dots (PQDs) with circularly polarized luminescence (CPL) offers great promise for innovative chiroptical applications, but the existing strategies are inefficient in acquiring stimuli-responsive flexible chiral perovskite films with large, tunable dissymmetry factor (glum) and long-term stability. Here, we report a strategy for the design and synthesis of luminescent cholesteric liquid crystal elastomer (Lumin-CLCE) films with mechanically tunable CPL, which is enabled by liquid crystal-templated chiral self-assembly and in situ covalent cross-linking of judiciously designed photopolymerizable CsPbX3 (X=Cl, Br, I) PQD nanomonomers into the elastic polymer networks. The resulting Lumin-CLCE films showcase circularly polarized structural color in natural light and noticeable CPL with a maximum glum value of up to 1.5 under UV light. The manipulation of CPL intensity and rotation direction is achieved by controlling the self-assembled helicoidal nanostructure and the handedness of soft helices. A significant breakthrough lies in the achievement of a reversible, mechanically tunable perovskite-based CPL switch activated by biaxial stretching, which enables flexible, dynamic anti-counterfeiting labels capable of decrypting preset information in specific polarization states. This work can provide new insights for the development of advanced chiral perovskite materials and their emerging applications in information encryption, flexible 3D displays, and beyond.

15.
Small ; 20(33): e2311557, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38553810

RESUMEN

A liquescent salt consisting of a 7,7,8,8-tetracyanquinodimethane (TCNQ) radical anion and a tetra-n-decylammonium ion, 1+•TCNQ•-, exhibits rapid changes in the short-wave infrared (SWIR) light transparency at 1000-1400 nm upon the application of a one-shot needlestick-stimulus. Radical anion salt 1+•TCNQ•- transforms from a blue solid to a green liquid at 90 °C without decomposition under aerated conditions, and remains in the liquid state upon cooling to 70 °C. After applying pressure with a needlestick on a cover glass at 70 °C, the liquid transforms rapidly into the solid state over a timescale of seconds across a centimeter scale of area. Along with the liquid-solid transition, the SWIR-light transparency at 1200 nm completely switches from the "on" to the "off" states. Experimental results, such as electronic spectra and crystal structure analysis, indicates that the SWIR-light absorption in the solid state is due to the existence of a slipped-stacking π-dimer structure for TCNQ•-. The rapid rearrangement is induced by the formation of the π-dimer structures from the monomers of TCNQ•- and the subsequent generations of the solid-state seed.

16.
Molecules ; 29(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257320

RESUMEN

Several types of 1,4-diphenylanthracene derivatives 1-4 were prepared, and their photophysical properties were observed in the solid and solution states. Interestingly, the CN-group-substituted 1,4-diphenylanthracene derivative 2 was found to exhibit a higher fluorescence quantum yield (ϕf = 0.71) in the solid state than in the solution state, probably due to the formation of an intermolecular Ar-CN⋯H-Ar hydrogen bond and antiparallel type locked packing structure in the solid state. Furthermore, for some derivatives, an increase in the fluorescence quantum yield was observed in the PMMA film (1 wt%) over both the solid state and the solution state. More interestingly, some of the 1,4-diphenylanthracene derivatives exhibited unusual mechanofluorochromic properties with a "hypsochromic shift" in luminous color depending on the substituents of the phenyl group, and with the derivatives having CF3, OMe, CN, and two F substituents (1d-1f, 2-4) showing a significant luminous color change with a "hypsochromic shift" after grinding. However, no change in the luminous color was observed for the derivatives having H, Me, and one F substituent (1a-1c), and especially for some of the CN-substituted derivatives, a reversible luminous color change with a "hypsochromic shift" was observed, probably due to the formation of an antiparallel type packing structure. These "hypsochromic" anthracene derivatives could probably be utilized as new mechanofluorochromic materials.

17.
Adv Sci (Weinh) ; 11(1): e2304022, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37942590

RESUMEN

Photonic crystals with mechanochromic properties are currently under intensive study to provide intuitive colorimetric detection of strains for various applications. However, the sensitivity of color change to strain is intrinsically limited, as the degree of deformation determines the wavelength shift. To overcome this limitation, auxetic photonic patterns that exhibit ultra-sensitive mechanochromism are designed. These patterns have a regular arrangement of cuts that expand to accommodate the strain, while the skeletal framework undergoes torsional deformation. Elastic photonic crystals composed of a non-close-packed array of colloidal particles are embedded in the cut area of the auxetic patterns. As the cut area amplifies the strains, the elastic photonic crystals show significant color change even for small total strains. The degree of local-strain amplification, or sensitivity of color change, is controllable by adjusting the width of cuts in the auxetic framework. In this work, a maximum sensitivity of up to 60 nm/% is achieved, which is 20 times higher than bulk films. It is believed that the auxetic photonic patterns with ultra-sensitive mechanochromism will provide new opportunities for the pragmatic use of mechanochromic materials in various fields, including structural health monitoring.

18.
Chemistry ; 30(6): e202303202, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38030581

RESUMEN

It is always a challenge to achieve "off-on" luminescent switch by regulating non-covalent interactions. Herein, we report a unique strategy for constructing high performance "off-on" tunable luminescent materials utilizing a novel molecule (TFPA) consist of pyrene and cyanostilbene. The pristine crystal of TFPA is almost non-emissive. Upon grinding/UV irradiation, an obvious luminescence enhancement is observed. Theoretical and experimental results revealed the underlying mechanism of this intriguing "off-on" switching behavior. The non-emissive crystal consists of ordered H-aggregates, with adjacent two molecules stacked in an anti-parallel manner and no overlapped area in pyrene moieties. When external force is applied by grinding or internal force is introduced through the photoisomerization, the dimer structures are facilitated with shorter intermolecular distances and better overlapping of pyrene moieties. In addition, the "on" state can recover to "off" state under thermal annealing, showing good reversibility and applicability in intelligence material. The present results promote an in-depth insight between packing structure and photophysical property, and offer an effective strategy for the construction of luminescence "off-on" switching materials, toward the development of stimuli-responsive luminescent materials for anti-counterfeiting.

19.
Chemistry ; 29(68): e202302605, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37694960

RESUMEN

Stimulus-responsive organic materials with luminescence switching properties have attracted considerable attention for their practical applications in sensing, security, and display devices. In this paper, bent-type bisbenzofuropyrazine derivatives, Bent-H and Bent-sBu, with good solubilities were synthesized, and their physical and optical properties were investigated in detail. Bent-H gave three crystalline polymorphs, and they showed different luminescence properties depending on their crystal packing structures. In addition, Bent-H exhibited mechanochromic luminescence in spite of its rigid skeleton. Bent-sBu exhibited unique concentration-dependent vapochromic luminescence. Ground Bent-sBu was converted to blue-emissive, green-emissive, and green-emissive high-viscosity solution states at low, moderate, and high concentrations of CHCl3 vapor, respectively. This finding represents a concentration-dependent multi-phase transition with an organic solvent, which is of potent interest for application in sensing systems.

20.
Front Chem ; 11: 1248267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720720

RESUMEN

The development of materials that emit in the deep-red to near-infrared region of the spectrum has attracted significant attention due to their potential as optical sensing and imaging reagents in biology. Herein, we report the synthesis and optoelectronic characterization of four anthraquinone-based emitters, T-tBuCz-AQ, T-MeOCz-AQ, C-tBuCz-AQ, and C-MeOCz-AQ, and two pyrazoloanthrone-based emitters, tBuCz-PA and DMAC-PA. Depending on the donor, these compounds emit in the spectral range between 640 and 750 nm in the neat film, while the emission of the 10 wt% doped films in poly(methyl methacrylate) (PMMA) is blue-shifted between 600 and 700 nm and has low photoluminescence quantum yields between 2.6% and 6.6%. Of these compounds, T-tBuCz-AQ, T-MeOCz-AQ, and C-tBuCz-AQ exhibited thermally activated delayed fluorescence (TADF) in 10 wt% doped films in PMMA, while the crystals of T-tBuCz-AQ also showed TADF. Compound tBuCz-PA showed a high-contrast and reversible photoluminescence (PL) response upon mechanical grinding and hexane fuming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA