Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39254669

RESUMEN

Hydrogen-Deuterium exchange mass spectrometry's (HDX-MS) utility in identifying and characterizing protein-small molecule interaction sites has been established. The regions that are seen to be protected from exchange upon ligand binding indicate regions that may be interacting with the ligand, giving a qualitative understanding of the ligand binding pocket. However, quantitatively deriving an accurate high-resolution structure of the protein-ligand complex from the HDX-MS data remains a challenge, often limiting its use in applications such as small molecule drug design. Recent efforts have focused on the development of methods to quantitatively model Hydrogen-Deuterium exchange (HDX) data from computationally modeled structures to garner atomic level insights from peptide-level resolution HDX-MS. One such method, HDX ensemble reweighting (HDXer), employs maximum entropy reweighting of simulated HDX data to experimental HDX-MS to model structural ensembles. In this study, we implement and validate a workflow which quantitatively leverages HDX-MS data to accurately model protein-small molecule ligand interactions. To that end, we employ a strategy combining computational protein-ligand docking, molecular dynamics simulations, HDXer, and dimensional reduction and clustering approaches to extract high-resolution drug binding poses that most accurately conform with HDX-MS data. We apply this workflow to model the interaction of ERK2 and FosA with small molecule compounds and inhibitors they are known to bind. In five out of six of the protein-ligand pairs tested, the HDX derived protein-ligand complexes result in a ligand root-mean-square deviation (RMSD) within 2.5 Å of the known crystal structure ligand.

2.
Ecol Evol ; 14(8): e70181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165541

RESUMEN

Species' ranges are shifting rapidly with climate change, altering the composition of biological communities and interactions within and among species. Hybridization is among the species interactions that may change markedly with climate change, yet it is understudied relative to others. We used non-invasive genetic detections to build a maximum entropy species distribution model and investigate the factors that delimit the present and future ranges of American marten (Martes americana) and Pacific marten (Martes caurina) in a contact zone in the Northern Rockies. We found that climate change will decrease the suitable habitat predicted for both species, as well as the amount of overlap in predicted suitable habitat between the species. Interestingly, predicted suitable habitat for Pacific marten extended further north in the study region than our genetic detections for the species, suggesting that biotic factors, such as interactions with American marten, may affect the realized range of this species. Our results suggest that future work investigating the interactions among biotic and abiotic factors that influence hybrid zone dynamics is important for predicting the futures of these two species in this area under climate change.

3.
Heliyon ; 10(15): e35250, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170474

RESUMEN

Here we propose a model-free, non-parametric method to solve an ill-posed inverse problem arising in several fields. It consists of determining a probability density of the lifetime, or the probability of survival of an individual, from the knowledge of the fractional moments of its probability distribution. The two problems are related, but they are different because of the natural normalization condition in each case. We provide a maximum entropy based approach to solve both problems. This problem provides a concrete framework to analyze an interesting problem in the theory of exponential models for probability densities. The central issue that comes up concerns the choice of the fractional moments and their number. We find that there are many possible choices that lead to solutions compatible with the data but in all of them, no more than four moments are necessary. The fact that a given data set can be accurately described by different exponential families poses a challenging problem for the model builder when attaching theoretical meaning to the resulting exponential density.

4.
Sci Rep ; 14(1): 19254, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164421

RESUMEN

As an important fishery resource and endangered species, studying the habitat of Coilia nasus (C. nasus) is highly significant. This study used fishery survey data from southern Zhejiang coastal waters from 2016 to 2020, employing a maximum entropy model (MaxEnt) to map the habitat distribution of C. nasus. Model performance was evaluated using two metrics: the area under the curve (AUC) of the receiver operating characteristic curve for the training and test sets and true skill statistics (TSS). This study aimed to predict the habitat distribution of C. nasus and explore how environmental variables influence habitat suitability. The results indicated that the models for each season had strong predictive performance, with AUC values above 0.8 and TSS values exceeding 0.6, indicating that they could accurately predict the presence of C. nasus. In the study area, C. nasus was primarily found in brackish or marine waters near bays and coastal islands. Among all environmental factors, salinity (S) and bottom temperature (BOT) had the highest correlations with habitat distribution, although these correlations varied across seasons. The findings of this study provide empirical evidence and a reference for the conservation and management of C. nasus and for the designation of its protected areas.

5.
Front Plant Sci ; 15: 1371998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091317

RESUMEN

Nicotiana tabacum L. (tobacco) has extremely high economic value, medicinal value, scientific research value and some other uses. Though it has been widely cultivated throughout the world, classification and change of its suitable habitats is not that clear, especially in the context of global warming. In order to achieve rational cultivation and sustainable development of tobacco, current (average from 1970-2000) and future (2070, average from 2061-2080) potential suitable habitats of Nicotiana tabacum L. were forecasted with MaxEnt model and ArcGIS platform based on 854 occurrence data and 22 environmental factors in this study. The results revealed that mean temperature of warmest quarter (bio10), annual precipitation (bio12), solar radiation in September (Srad9), and clay content (CLAY) were the four decisive environment variables for the distribution of Nicotiana tabacum L. Under current climate conditions, suitable habitats of Nicotiana tabacum L. were mainly distributed in south-central Europe, south-central North America, most parts of South America, central Africa, south and southeast Asia, and southeast coast of Australia, and only 13.7% of these areas were highly suitable. By the year 2070, suitable habitats under SSP1-2.6, SSP3-7.0, and SSP5-8.5 climate scenarios would all increase with the largest increase found under SSP3-7.0 scenario, while suitable habitats would reduce under SSP2-4.5 climate scenario. Globally, the center of mass of suitable habitats would migrate to southeast to varying degrees within Libya under four different climate scenarios. The emergence of new habitats and the disappearance of old habitats would all occur simultaneously under each climate scenario, and the specific changes in each area, combined with the prediction results under current climate conditions, will provide an important reference for the adjustment of agronomic practices and rational cultivation of Nicotiana tabacum L. both currently and in the future.

6.
JMIR Public Health Surveill ; 10: e46070, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39104047

RESUMEN

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that was first identified in mainland China in 2009 and has been reported in Zhejiang Province, China, since 2011. However, few studies have focused on the association between ticks, host animals, and SFTS. Objective: In this study, we analyzed the influence of meteorological and environmental factors as well as the influence of ticks and host animals on SFTS. This can serve as a foundational basis for the development of strategic policies aimed at the prevention and control of SFTS. Methods: Data on SFTS incidence, tick density, cattle density, and meteorological and environmental factors were collected and analyzed using a maximum entropy-based model. Results: As of December 2019, 463 laboratory-confirmed SFTS cases were reported in Zhejiang Province. We found that the density of ticks, precipitation in the wettest month, average temperature, elevation, and the normalized difference vegetation index were significantly associated with SFTS spatial distribution. The niche model fitted accurately with good performance in predicting the potential risk areas of SFTS (the average test area under the receiver operating characteristic curve for the replicate runs was 0.803 and the SD was 0.013). The risk of SFTS occurrence increased with an increase in tick density, and the response curve indicated that the risk was greater than 0.5 when tick density exceeded 1.4. The risk of SFTS occurrence decreased with increased precipitation in the wettest month, and the risk was less than 0.5 when precipitation exceeded 224.4 mm. The relationship between elevation and SFTS occurrence showed a reverse V shape, and the risk peaked at approximately 400 m. Conclusions: Tick density, precipitation, and elevation were dominant influencing factors for SFTS, and comprehensive intervention measures should be adjusted according to these factors to reduce SFTS incidence in Zhejiang Province.


Asunto(s)
Entropía , Síndrome de Trombocitopenia Febril Grave , China/epidemiología , Humanos , Síndrome de Trombocitopenia Febril Grave/epidemiología , Animales , Medición de Riesgo/métodos , Análisis Espacial , Masculino , Femenino , Persona de Mediana Edad , Bovinos , Factores de Riesgo , Incidencia , Anciano , Adulto , Garrapatas
7.
Brain Sci ; 14(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39199448

RESUMEN

To ensure survival, the visual system must rapidly extract the most important elements from a large stream of information. This necessity clashes with the computational limitations of the human brain, so a strong early data reduction is required to efficiently process information in fast vision. A theoretical early vision model, recently developed to preserve maximum information using minimal computational resources, allows efficient image data reduction by extracting simplified sketches containing only optimally informative, salient features. Here, we investigate the neural substrates of this mechanism for optimal encoding of information, possibly located in early visual structures. We adopted a flicker adaptation paradigm, which has been demonstrated to specifically impair the contrast sensitivity of the magnocellular pathway. We compared flicker-induced contrast threshold changes in three different tasks. The results indicate that, after adapting to a uniform flickering field, thresholds for image discrimination using briefly presented sketches increase. Similar threshold elevations occur for motion discrimination, a task typically targeting the magnocellular system. Instead, contrast thresholds for orientation discrimination, a task typically targeting the parvocellular system, do not change with flicker adaptation. The computation performed by this early data reduction mechanism seems thus consistent with magnocellular processing.

8.
Entropy (Basel) ; 26(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39202090

RESUMEN

Equilibrium density fluctuations at the molecular level produce cavities in a liquid and can be analyzed to shed light on the statistics of the number of molecules occupying observation volumes of increasing radius. An information theory approach led to the conclusion that these probabilities should follow a Gaussian distribution. Computer simulations confirmed this prediction across various liquid models if the size of the observation volume is not large. The reversible work required to create a cavity and the chance of finding no molecules in a fixed observation volume are directly correlated. The Gaussian formula for the latter probability is scrutinized to derive the changes in enthalpy and entropy, which arise from the cavity creation. The reversible work of cavity creation has a purely entropic origin as a consequence of the solvent-excluded volume effect produced by the inaccessibility of a region of the configurational space. The consequent structural reorganization leads to a perfect compensation of enthalpy and entropy changes. Such results are coherent with those obtained from Lee in his direct statistical mechanical study.

9.
Entropy (Basel) ; 26(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39202161

RESUMEN

Maximum entropy (MaxEnt) models are a class of statistical models that use the maximum entropy principle to estimate probability distributions from data. Due to the size of modern data sets, MaxEnt models need efficient optimization algorithms to scale well for big data applications. State-of-the-art algorithms for MaxEnt models, however, were not originally designed to handle big data sets; these algorithms either rely on technical devices that may yield unreliable numerical results, scale poorly, or require smoothness assumptions that many practical MaxEnt models lack. In this paper, we present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth MaxEnt models. Our proposed first-order algorithms leverage the Kullback-Leibler divergence to train large-scale and non-smooth MaxEnt models efficiently. For MaxEnt models with discrete probability distribution of n elements built from samples, each containing m features, the stepsize parameter estimation and iterations in our algorithms scale on the order of O(mn) operations and can be trivially parallelized. Moreover, the strong ℓ1 convexity of the Kullback-Leibler divergence allows for larger stepsize parameters, thereby speeding up the convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider the problem of estimating probabilities of fire occurrences as a function of ecological features in the Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms outperform the state of the art by one order of magnitude and yield results that agree with physical models of wildfire occurrence and previous statistical analyses of wildfire drivers.

10.
Environ Sci Pollut Res Int ; 31(40): 53348-53368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186202

RESUMEN

Turkey is the leading producer of pine honey worldwide, accounting for 90% of global production, largely due to the presence of Marchalina hellenica populations. However, in recent years, devastating forest fires have caused substantial damage to Pinus brutia forests and M. hellenica populations, leading to a dramatic decline in pine honey production areas. The urgency for early intervention procedures against forest fires and relocation of M. hellenica populations to other P. brutia forests has become apparent. A comprehensive assessment of 25 criteria was conducted to investigate the thresholds and behaviors of each criterion, which play a vital role in the distribution of M. hellenica, using the maximum entropy model (MaxEnt). To evaluate the impact of forest fires on the distribution of M. hellenica, the potential locations of pine honey production areas were determined for 2022. Furthermore, the susceptibility of forest fires was modeled for all pine honey production months. The findings revealed that forest fires have destroyed 384.9 km2 (12.8% of the total pine honey production area), predominantly in August and September, with the most severe damage in Marmaris (156 km2) and significant impacts in Ula, Köycegiz, and Milas. The analysis facilitates the estimation of new areas suitable for M. hellenica and pine honey production while providing valuable insights into strategies for mitigating forest fires and formulating proactive protection protocols.


Asunto(s)
Bosques , Miel , Pinus , Turquía , Incendios Forestales , Animales , Incendios , Gorgojos
11.
Sci Rep ; 14(1): 16438, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013941

RESUMEN

In regions like Oman, which are characterized by aridity, enhancing the water quality discharged from reservoirs poses considerable challenges. This predicament is notably pronounced at Wadi Dayqah Dam (WDD), where meeting the demand for ample, superior water downstream proves to be a formidable task. Thus, accurately estimating and mapping water quality indicators (WQIs) is paramount for sustainable planning of inland in the study area. Since traditional procedures to collect water quality data are time-consuming, labor-intensive, and costly, water resources management has shifted from gathering field measurement data to utilizing remote sensing (RS) data. WDD has been threatened by various driving forces in recent years, such as contamination from different sources, sedimentation, nutrient runoff, salinity intrusion, temperature fluctuations, and microbial contamination. Therefore, this study aimed to retrieve and map WQIs, namely dissolved oxygen (DO) and chlorophyll-a (Chl-a) of the Wadi Dayqah Dam (WDD) reservoir from Sentinel-2 (S2) satellite data using a new procedure of weighted averaging, namely Bayesian Maximum Entropy-based Fusion (BMEF). To do so, the outputs of four Machine Learning (ML) algorithms, namely Multilayer Regression (MLR), Random Forest Regression (RFR), Support Vector Regression (SVRs), and XGBoost, were combined using this approach together, considering uncertainty. Water samples from 254 systematic plots were obtained for temperature (T), electrical conductivity (EC), chlorophyll-a (Chl-a), pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) in WDD. The findings indicated that, throughout both the training and testing phases, the BMEF model outperformed individual machine learning models. Considering Chl-a, as WQI, and R-squared, as evaluation indices, BMEF outperformed MLR, SVR, RFR, and XGBoost by 6%, 9%, 2%, and 7%, respectively. Furthermore, the results were significantly enhanced when the best combination of various spectral bands was considered to estimate specific WQIs instead of using all S2 bands as input variables of the ML algorithms.

12.
Animals (Basel) ; 14(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998049

RESUMEN

Snow leopards (Panthera uncia) are elusive predators inhabiting high-altitude and mountainous rugged habitats. The current study was conducted in the Yanchiwan National Nature Reserve, Gansu Province, China, to assess the habitat suitability of snow leopards and identify key environmental factors inducing their distribution. Field data collected between 2019 and 2022 through scat sampling and camera trapping techniques provided insights into snow leopard habitat preferences. Spatial distribution and cluster analyses show distinct hotspots of high habitat suitability, mostly concentrated near mountainous landscapes. While altitude remains a critical determinant, with places above 3300 m showing increased habitat suitability, other factors such as soil type, human footprint, forest cover, prey availability, and human disturbance also play important roles. These variables influence ecological dynamics and are required to assess and manage snow leopard habitats. The MaxEnt model has helped us to better grasp these issues, particularly the enormous impact of human activities on habitat suitability. The current study highlights the importance of altitude in determining snow leopard habitat preferences and distribution patterns in the reserve. Furthermore, the study underscores the significance of considering elevation in conservation planning and management strategies for snow leopards, particularly in mountainous regions. By combining complete environmental data with innovative modeling tools, this study not only improves local conservation efforts but also serves as a model for similar wildlife conservation initiatives around the world. By understanding the environmental factors driving snow leopard distribution, conservation efforts can be more efficiently directed to ensure the long-term survival of this endangered species. This study provides valuable insights for evidence-based conservation efforts to safeguard the habitats of snow leopards amidst emerging anthropogenic pressure and environmental fluctuations.

13.
Biodivers Data J ; 12: e126620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957701

RESUMEN

Chimonobambusautilis is a unique edible bamboo species valued for its economic and nutritional benefits. However, its existence in natural habitats is at risk due to environmental shifts and human interventions. This research utilised the maximum entropy model (MaxEnt) to predict potential habitats for Ch.utilis in China, identifying key environmental factors influencing its distribution and analysing changes in suitable habitats under future climate conditions. The results show that the results of the MaxEnt model have high prediction accuracy, with an AUC (Area Under the receiver operating characteristic Curve) value of 0.997. Precipitation in the driest month (Bio14), altitude (Alt) and isothermality (Bio03) emerged as the primary environmental factors influencing the Ch.utilis distribution. Currently, the suitable habitats area for Ch.utilis is 10.55 × 104 km2. Projections for the 2050s and 2090s indicate potential changes in suitable habitats ranging from -3.79% to 10.52%. In general, the most suitable habitat area will decrease and shrink towards higher latitude areas in the future. This study provides a scientific basis for the introduction, cultivation and conservation of Ch.utilis.

14.
Eur J Neurosci ; 60(3): 4265-4290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837814

RESUMEN

Energy landscape analysis is a data-driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within-participant reliability) than across different sets of sessions from different participants (i.e. between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Masculino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Femenino , Teorema de Bayes , Descanso/fisiología
15.
Open Life Sci ; 19(1): 20220883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911932

RESUMEN

Ethnobotanical studies revealed the experience and knowledge of people who learned the therapeutic virtues of plants through trials and errors and transferred their knowledge to the next generations. This study determined the ethnobotanical use of Juniperus drupacea (Andiz) in the Antalya province and the current and future potential distribution areas of J. drupacea in Türkiye during 2041-2060 and 2081-2100 according to the SSP2-4.5 and SSP5-8.5 scenarios and based on the IPSL-CM6A-LR climate change model. The very suitable areas encompassed 22379.7 km2. However, when the SSP2-4.5 scenario was considered, the areas most suitable for J. drupacea comprised 6215.892 km2 for 2041-2060 and 378.318 km2 for 2081-2100. Based on the SSP5-8.5 scenario, the area most suitable for J. drupacea was 979.082 km2 for 2041-2060. However, no suitable areas were identified with the SSP5-8.5 scenario for 2081-2100. Considering the models for the future estimated distribution areas of J. drupacea, serious contractions endangering the species are predicted in its distribution areas. Therefore, scientific research should focus on identifying J. drupacea populations and genotypes that demonstrate resilience to future drought conditions resulting from climate change. This endeavor is crucial as it holds significant ecological and economic values.

16.
Front Plant Sci ; 15: 1369641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887466

RESUMEN

Anisodus tanguticus (Maxim.) Pascher, a distinctive medicinal plant native to the Qinghai-Tibet Plateau, China, has garnered attention due to increasing market demand. This study explores the impact of environmental factors on the distribution and levels of active compounds namely anisodamine, anisodine, and atropine within A. tanguticus. Our goal was to identify suitable cultivation areas for this plant. This study employs the maximum entropy model to simulate the suitable area of A. tanguticus under current conditions and three climate change scenarios during the 2050s and 2070s. The finding revealed that altitude, precipitation in the warmest season (Bio 18), the average annual temperature (Bio 1) exerted significant influences on the distribution of A. tanguticus. Among the environmental factors considered, temperature difference between day and night (Bio 2) had the most substantial impact on the distribution of anisodamine, temperature seasonal variation variance (Bio 4) predominantly influenced anisodine distribution, and Bio 1 had the greatest effected on the distribution of atropine. The suitable areas primarily exist in the eastern Qinghai-Tibet Plateau in China, encompassing a total area of 30.78 × 104 km2. Under the climate scenarios for the future, the suitable areas exhibit increasing trends of approximately 30.2%, 30.3%, and 39.8% by the 2050s, and 25.1%, 48.8%, and 60.1% by the 2070s. This research would provide theoretical suggestions for the protection, and cultivation management of A. tanguticus resources to face the challenge of global climate change.

17.
Ecol Evol ; 14(6): e11582, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932977

RESUMEN

Climate change significantly impacted on the survival, development, distribution, and abundance of living organisms. The Chinese serow Capricornis milneedwardsii, known as the "four unlike," is a Class II nationally protected species in China. In this study, we predicted the geographical suitability of C. milneedwardsii under current and future climatic conditions using MaxEnt. The model simulations resulted in area under the receiver operating characteristic curve (AUC) values above 0.9 for both current and future climate scenarios, indicating the excellent performance, high accuracy, and credibility of the MaxEnt model. The results also showed that annual precipitation (Bio12), slope, elevation, and mean temperature of wettest quarter (Bio8) were the key environmental variables affecting the distribution of C. milneedwardsii, with contributions of 31.2%, 26.4%, 11%, and 10.3%, respectively. The moderately and highly suitable habitats were mainly located in the moist area of China, with a total area of 34.56 × 104 and 16.61 × 104 km2, respectively. Under future climate change scenarios, the areas of suitability of C. milneedwardsii showed an increasing trend. The geometric center of the total suitable habitats of C. milneedwardsii would show the trend of northwest expansion and southeast contraction. These findings could provide a theoretical reference for the protection of C. milneedwardsii in the future.

18.
Pest Manag Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899513

RESUMEN

BACKGROUND: The range of Glires is influenced by human activities and climate change. However, the extent to which human activities and environmental changes have contributed to this relationship remains unclear. We examined alterations in the distribution changes and driving factors of the Himalayan marmot, plateau pika, and plateau zokor on the Qinghai-Tibet Plateau (QTP) using the maximum entropy (MaxEnt) model and a geographical detector (Geodetector). RESULTS: The MaxEnt model showed that the contribution rates of the human footprint index (HFI) to the distribution patterns of the three types of Glires were 46.70%, 58.70%, and 59.50%, respectively. The Geodetector results showed that the distribution pattern of the Himalayan marmot on the QTP was influenced by altitude and the normalized difference vegetation index (NDVI). The distribution patterns for plateau pikas and plateau zokors were driven by HFI and NDVI. Climate has played a substantial role in shaping suitable habitats for these three Glires on the QTP. Their suitable area is expected to decrease over the next 30-50 years, along with their niche breadth and overlap. Future suitable habitats for the three Glires tended to shift toward higher latitudes on the QTP. CONCLUSION: These findings underscore the impacts of environmental and human factors on the distribution of the three Glires on the QTP. They have enhanced our understanding of the intricate relationships between Glires niches and environments. This can aid in identifying necessary interventions for developing effective early warning systems and prevention strategies to mitigate Glires infestations and plague epidemics on the QTP. © 2024 Society of Chemical Industry.

19.
BMC Ecol Evol ; 24(1): 83, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902600

RESUMEN

BACKGROUND: Understanding the distribution pattern of species and their suitable habitat is key to focus conservation efforts. Climate change has had notable impact on the distribution and extent of suitable habitats, and the long-term survival of various species. We aim to determine the distribution and extent of suitable habitats for Tauraco ruspolii and T. leucotis in Ethiopia and predict their range in the 2050s and 2070s using MaxEnt algorithm. We used 25 and 29 rarified occurrence points for T. ruspolii and T. leucotis, respectively, and 13 environmental variables. Three regularization multipliers and two cut-off thresholds were used to map the potential suitable habitats for each species under current and future climates. Maps were assembled from these techniques to produce final composite tertiary maps and investigated the habitat suitability overlap between the two species using the UNION tool in the geographical information system. RESULT: All model run performances were highly accurate for both species. Precipitation of the driest month and vegetation cover are the most influential variables for the habitat suitability of T. ruspolii. The habitat suitability of T. leucotis is also mainly influenced by mean temperature of the driest quarter and vegetation cover. Under the current climate, the suitable habitat predicted for T. ruspolii covered about 24,639.19 km2, but its range size change shows a gain and increase by 156.00% and 142.68% in 2050 and 2070, respectively. The T. leucotis's current suitable habitat ranges about 204,397.62 km², but this is reduced by 40.84% and 68.67% in 2050 and 2070, respectively. Our modeling also showed that there was suitable habitat overlap between them at the margin of their respective habitat types in time series. CONCLUSION: We concluded that there is a direct or indirect impact of climate change on the suitable habitat range expansion for T. ruspolii and contraction for T. leucotis as well as overlapping of these turaco species in different regions of Ethiopia. Therefore, understanding the distribution of current and future suitable habitats of the two turaco species can provide valuable information to implement conservation practices for the species and the regions as well.


Asunto(s)
Cambio Climático , Ecosistema , Etiopía , Animales , Conservación de los Recursos Naturales
20.
Entropy (Basel) ; 26(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38785665

RESUMEN

In unstructured environments, robots need to deal with a wide variety of objects with diverse shapes, and often, the instances of these objects are unknown. Traditional methods rely on training with large-scale labeled data, but in environments with continuous and high-dimensional state spaces, the data become sparse, leading to weak generalization ability of the trained models when transferred to real-world applications. To address this challenge, we present an innovative maximum entropy Deep Q-Network (ME-DQN), which leverages an attention mechanism. The framework solves complex and sparse reward tasks through probabilistic reasoning while eliminating the trouble of adjusting hyper-parameters. This approach aims to merge the robust feature extraction capabilities of Fully Convolutional Networks (FCNs) with the efficient feature selection of the attention mechanism across diverse task scenarios. By integrating an advantage function with the reasoning and decision-making of deep reinforcement learning, ME-DQN propels the frontier of robotic grasping and expands the boundaries of intelligent perception and grasping decision-making in unstructured environments. Our simulations demonstrate a remarkable grasping success rate of 91.6%, while maintaining excellent generalization performance in the real world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA