Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.239
Filtrar
1.
Front Immunol ; 15: 1328175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229270

RESUMEN

Introduction: Pediatric patients with unexplained bone marrow failure (BMF) are often categorized as aplastic anemia (AA). Based on the accepted hypothesis of an auto-immune mechanism underlying AA, immune suppressive therapy (IST) might be effective. However, due to the lack of diagnostic tools to identify immune AA and prognostic markers to predict IST response together with the unequaled curative potential of hematopoietic stem cell transplantation (HSCT), most pediatric severe AA patients are momentarily treated by HSCT if available. Although several studies indicate oligoclonal T-cells with cytotoxic activities towards the hematopoietic stem cells, increasing evidence points towards defective inhibitory mechanisms failing to inhibit auto-reactive T-cells. Methods: We aimed to investigate the role of NK- and B-cells in seven pediatric AA patients through a comprehensive analysis of paired bone marrow and peripheral blood samples with spectral flow cytometry in comparison to healthy age-matched bone marrow donors. Results: We observed a reduced absolute number of NK-cells in peripheral blood of AA patients with a skewed distribution towards CD56bright NK-cells in a subgroup of patients. The enriched CD56bright NK-cells had a lower expression of CD45RA and TIGIT and a higher expression of CD16, compared to healthy donors. Functional analysis revealed no differences in degranulation. However, IFN-γ production and perforin expression of NK-cells were reduced in the CD56bright-enriched patient group. The diminished NK-cell function in this subgroup might underly the auto-immunity. Importantly, NK-function of AA patients with reduced CD56bright NK-cells was comparable to healthy donors. Also, B-cell counts were lower in AA patients. Subset analysis revealed a trend towards reduction of transitional B-cells in both absolute and relative numbers compared to healthy controls. As these cells were previously hypothesized as regulatory cells in AA, decreased numbers might be involved in defective inhibition of auto-reactive T-cells. Interestingly, even in patients with normal distribution of precursor B-cells, the transitional compartment was reduced, indicating partial differentiation failure from immature to transitional B-cells or a selective loss. Discussion: Our findings provide a base for future studies to unravel the role of transitional B-cells and CD56bright NK-cells in larger cohorts of pediatric AA patients as diagnostic markers for immune AA and targets for therapeutic interventions.


Asunto(s)
Anemia Aplásica , Linfocitos B , Inmunofenotipificación , Células Asesinas Naturales , Humanos , Células Asesinas Naturales/inmunología , Anemia Aplásica/inmunología , Anemia Aplásica/terapia , Niño , Masculino , Femenino , Linfocitos B/inmunología , Adolescente , Preescolar , Citometría de Flujo
2.
Open Forum Infect Dis ; 11(9): ofae488, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252869

RESUMEN

Background: Many patients with hematological malignancy develop fever after chemotherapy/conditioning but before chemotherapy-induced neutropenia (preneutropenic fever [PNF]). The proportion of PNF with an infectious etiology is not well established. Methods: We conducted a single-center, prospective observational substudy of PNF (neutrophils >0.5 cells/µL, ≥38.0°C) in adults receiving acute myeloid leukemia (AML) chemotherapy, or allogeneic hematopoietic cell transplant (allo-HCT) conditioning enrolled in a neutropenic fever randomized controlled trial between 1 January and 31 October 2018. Eligible patients had anticipated neutropenia ≥10 days and exclusions included concurrent infection and/or neutropenia prior to chemotherapy or conditioning. PNF rates and infections encountered were described. Associations between noninfectious etiologies and fever were explored. Antimicrobial therapy prescription across preneutropenic and neutropenic periods was examined. Results: Of 62 consecutive patients included (43 allo-HCT, 19 AML), 27 had PNF (44%) and 5 (19%) had an infective cause. Among allo-HCT, PNF occurred in 14 of 17 (82%) who received thymoglobulin; only 1 of 14 (7%) had infection. During AML chemotherapy, 18 of 19 received cytarabine, of which 8 of 18 (44%) had PNF and 3 of 8 (38%) had infection. Most patients with PNF had antimicrobial therapy continued into the neutropenic period (19/27 [70%]). Those with PNF were more likely to be escalated to broader antimicrobial therapy at onset/during neutropenic fever (5/24 [21%] vs 2/30 [7%]). Conclusions: Rates of PNF were high, and documented infection low, leading to prolonged and escalating antimicrobial therapy. In the absence of infection, early cessation of empiric therapy after PNF is recommended as an important stewardship intervention.

3.
Heliyon ; 10(16): e36448, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253123

RESUMEN

To investigate the ability of sulfonated polyetheretherketone (SPEEK) to promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and compare the effects of different degrees of sulfonation (DS), SPEEK was made with two different DS. The L-SPEEK group had a lower DS, while the H-SPEEK group had a higher DS. The physicochemical properties of both species were evaluated by scanning electron microscopy (SEM), capitilize Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Then, proliferation and osteogenic differentiation between the two groups and with pure polyetheretherketone (PEEK) were compared after surface inoculation of bone marrow mesenchymal stem cells (BMSCs). Scanning electron microscopy (SEM) revealed that the surface of the PEEK substrates could be smooth or coarse, and the degree of roughness increased with increasing sulfonation. FTIR spectroscopy showed that both the L-SPEEK and H-SPEEK samples contained sulfonic acid. TGA and XRD revealed that the components in the two groups were the same, but the intensities were different. After BMSC inoculation, a CCK8 assay revealed that the cells proliferated more on the H-SPEEK surface and little on the L-SPEEK surface compared with the PEEK surface. Then, osteogenic differentiation was verified by immunofluorescence staining for OCN and Runx2, which indicated that H-SPEEK had the greatest effect on improving differentiation. The results of alizarin red staining (ARS) and alkaline phosphatase staining (APS) also revealed this trend. Sulfonation can change the microsurface of PEEK, which can improve both BMSC proliferation and osteogenic differentiation.

4.
Mol Ther Methods Clin Dev ; 32(3): 101314, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39253356

RESUMEN

In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.

5.
Cancer Cell ; 42(9): 1549-1569.e16, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39255776

RESUMEN

Tumor-associated neutrophil (TAN) effects on glioblastoma (GBM) biology remain under-characterized. We show here that neutrophils with dendritic features-including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate major histocompatibility complex (MHC)II-dependent T cell activation-accumulate intratumorally and suppress tumor growth in vivo. Trajectory analysis of patient TAN scRNA-seq identifies this "hybrid" dendritic-neutrophil phenotype as a polarization state that is distinct from canonical cytotoxic TANs, and which differentiates from local precursors. These hybrid-inducible immature neutrophils-which we identified in patient and murine glioblastomas-arise not from circulation, but from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a contributor of antitumoral myeloid antigen-presenting cells (APCs), including TANs, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow-such as intracalvarial AMD3100, whose survival-prolonging effect in GBM we report-present therapeutic potential.


Asunto(s)
Neoplasias Encefálicas , Diferenciación Celular , Células Dendríticas , Glioblastoma , Neutrófilos , Humanos , Animales , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/genética , Glioblastoma/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Cráneo/patología , Cráneo/inmunología , Médula Ósea/patología , Médula Ósea/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral
6.
Chin J Dent Res ; 27(3): 225-234, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221983

RESUMEN

OBJECTIVE: To reveal the role and mechanism of cannabinoid receptor 1 (CB1) and mitochondria in promoting osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in the inflammatory microenvironment. METHODS: Bidirectional mitochondrial transfer was performed in bone mesenchymal stem cells (BMSCs) and PDLSCs. Laser confocal microscopy and quantitative flow cytometry were used to observe the mitochondrial transfer and quantitative mitochondrial transfer efficiency. Realtime reverse transcription polymerase chain reaction (RT-PCR) was employed to detect gene expression. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS) and quantitative calcium ion analysis were used to evaluate the degree of osteogenic differentiation of PDLSCs. RESULTS: Bidirectional mitochondrial transfer was observed between BMSCs and PDLSCs. The indirect co-culture system could simulate intercellular mitochondrial transfer. Compared with the conditioned medium (CM) for BMSCs, that for HA-CB1 BMSCs could significantly enhance the mineralisation ability of PDLSCs. The mineralisation ability of PDLSCs could not be enhanced after removing the mitochondria in CM for HA-CB1 BMSCs. The expression level of HO-1, PGC-1α, NRF-1, ND1 and HK2 was significantly increased in HA-CB1 BMSCs. CONCLUSION: CM for HA-CB1 BMSCs could significantly enhance the damaged osteogenic differentiation ability of PDLSCs in the inflammatory microenvironment, and the mitochondria of CM played an important role. CB1 was related to the activation of the HO-1/PGC-1α/NRF-1 mitochondrial biogenesis pathway, and significantly increased the mitochondrial content in BMSCs.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Mitocondrias , Osteogénesis , Ligamento Periodontal , Receptor Cannabinoide CB1 , Adolescente , Humanos , Células de la Médula Ósea , Células Cultivadas , Técnicas de Cocultivo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Mitocondrias/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal/citología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-39266412

RESUMEN

Lymphoma and myeloproliferative diseases in horses are relatively uncommon. The clinical signs, prognosis, and treatment options depend upon the anatomic location and subtype. Significant gaps in knowledge remain regarding prevalence, pathogenesis of different subtypes, antemortem diagnostic tests, response to treatment, and standardized treatment protocols. However, treatment options are available, accessible on the farm, and could improve quality of life and prolong survival.

8.
J Allergy Clin Immunol Glob ; 3(4): 100313, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39221430

RESUMEN

Prompt evaluation and genetic testing of patients who present with recurrent and recalcitrant warts, before onset of severe infection or myelodysplastic syndrome, leads to improved outcomes in patients with GATA2 deficiency.

9.
Acta Ortop Mex ; 38(4): 208-213, 2024.
Artículo en Español | MEDLINE | ID: mdl-39222943

RESUMEN

INTRODUCTION: the pandemic of COVID-19 has led to clinical complications such as avascular necrosis of the femoral head (AVNFH) associated with the use of corticosteroids. The aim of the study is to report the functional and radiographic results of 13 patients with post-COVID-19 ANFH after decompression using Forage and bone marrow aspirate concentrate (BMAC). MATERIAL AND METHODS: single-center, prospective, uncontrolled clinical study. From April 2020 to September 2021, 13 patients (21 hips) with post-COVID-19 ANFH were treated. All received corticosteroids during infection (average daily dose: 480 mg). Clinical, radiographic and magnetic resonance imaging evaluations were performed; the Ficat classification was applied for the classification of AVNFH. The surgical technique used was decompression with Forage and ACMO. RESULTS: the mean age was 47 years, with a follow-up of 30.4 months. Symptoms appeared with a mean of 4.2 months after COVID-19 infection. Harris score improved from 41.2 ± 5.2 to 86.6 ± 3.4. Radiographic evaluation showed that 14.3% of the sample experienced femoral head collapse and underwent total hip arthroplasty. CONCLUSIONS: post-COVID-19 ANFH is a clinical entity with rapid progression and different degrees of severity. Decompression with Forage and ACMO seems a promising initial treatment, however, the variable response and the probability of collapse emphasize the importance of long-term follow-up and identification of patients who may require additional interventions.


INTRODUCCIÓN: la pandemia de COVID-19 ha dado lugar a complicaciones clínicas como la necrosis avascular de la cabeza femoral (NAVCF) asociada con el uso de corticoesteroides. El objetivo del estudio es reportar los resultados funcionales y radiográficos de 13 pacientes con NAVCF post-COVID-19, después de la descompresión utilizando Forage y aspirado de células de medula ósea (ACMO). MATERIAL Y MÉTODOS: estudio clínico unicéntrico, prospectivo, no controlado. Desde Abril de 2020 hasta Septiembre de 2021, se trataron 13 pacientes (21 caderas) con NAVCF post-COVID-19. Todos recibieron corticoesteroides durante la infección (dosis promedio diaria: 480 mg). Se realizaron evaluaciones clínicas, radiográficas y por resonancia magnética nuclear; se aplicó la clasificación de Ficat para la clasificación de NAVCF. La técnica quirúrgica empleada fue descompresión con Forage y ACMO. RESULTADOS: la edad promedio fue 47 años, con un seguimiento de 30.4 meses. Los síntomas aparecieron con una media de 4.2 meses después de la infección por COVID-19. La escala de Harris mejoró de 41.2 ± 5.2 a 86.6 ± 3.4. La evaluación radiográfica demostró que 14.3% de la muestra experimentó colapso de la cabeza femoral por lo que se les realizó artroplastía total de cadera. CONCLUSIONES: la NAVCF post-COVID-19 es una entidad clínica con rápida progresión y diferentes grados de severidad. La descompresión con Forage y ACMO parece un tratamiento inicial prometedor; sin embargo, la respuesta variable y la probabilidad de colapso, enfatizan la importancia de seguimiento a largo plazo e identificación de los pacientes que puedan requerir intervenciones adicionales.


Asunto(s)
COVID-19 , Descompresión Quirúrgica , Necrosis de la Cabeza Femoral , Humanos , Necrosis de la Cabeza Femoral/cirugía , Necrosis de la Cabeza Femoral/etiología , COVID-19/complicaciones , Descompresión Quirúrgica/métodos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Resultado del Tratamiento , Trasplante de Médula Ósea/métodos , Corticoesteroides/uso terapéutico , Corticoesteroides/administración & dosificación , Imagen por Resonancia Magnética , Estudios de Seguimiento
10.
J Cell Mol Med ; 28(17): e70049, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219013

RESUMEN

The significance of anterior cruciate ligament (ACL) remnants during reconstruction remains unclear. Co-culturing ACL remnant cells and bone marrow stromal cells (BMSCs) may reduce apoptosis and enhance hamstring tendon activity. This study investigated whether extracellular vesicles (EVs), which facilitate cell-cell interactions, act as the active components, improving graft maturation in this co-culture. The effects of EVs on cell viability, proliferation, migration and gene expression in the rabbit ACL remnant cells and BMSCs were assessed using control (BMSC-only culture), co-culture (ACL remnant cells and BMSCs, CM) and co-culture without EVs (CM ∆ EVs) media. EVs were isolated from control (BMSC-EV) and co-culture (CM-EV) media and characterized. CM significantly enhanced the proliferation, migration and expression of transforming growth factor (TGF-ß)-, vascular endothelial growth factor (VEGF)-, collagen synthesis- and tenogenesis-related genes. However, CM-induced effects were reversed by the CM ∆ EVs treatment. CM-EV treatment exhibited higher potential to enhance proliferation, migration and gene expression in the ACL remnant cells and BMSCs than BMSC-EV and non-EV treatments. In conclusion, EVs, secreted under the coexistence of ACL remnant cells and BMSCs, primarily increase the cell viability, proliferation, migration and gene expression of collagen synthesis-, TGF-ß-, VEGF- and tenogenesis-related genes in both cell types.


Asunto(s)
Ligamento Cruzado Anterior , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Vesículas Extracelulares , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Conejos , Ligamento Cruzado Anterior/citología , Ligamento Cruzado Anterior/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Células Cultivadas , Regulación de la Expresión Génica , Comunicación Celular , Factor de Crecimiento Transformador beta/metabolismo , Masculino
11.
Adv Biomed Res ; 13: 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224404

RESUMEN

Background: Numerous studies have confirmed the therapeutic efficacy of bone marrow-derived mesenchymal stem cells (BM-MSCs) in addressing neurologic disorders. To date, several preconditioning strategies have been designed to improve the therapeutic potential of these stem cells. This study was designed to evaluate the preconditioning effect of dimethyl fumarate (DMF) on the expression of main trophic factors in human BM-MSCs. Materials and Methods: Initially, the identity of stem cells was confirmed through the evaluation of surface markers and their capacity for osteogenic and adipogenic differentiation using flow cytometry and differentiation assay, respectively. Subsequently, stem cells were subjected to different concentrations of DMF for 72 hours and their viability was defined by MTT assay. Following 72-hour preconditioning period with 10 µM DMF, gene expression was assessed by quantitative RT-PCR. Results: Our findings demonstrated that the isolated stem cells expressed cardinal MSC surface markers and exhibited osteogenic and adipogenic differentiation potential. MTT results confirmed that 10 µM DMF was an optimal dose for maintaining cell viability. Preconditioning of stem cells with DMF significantly upregulated the expression of BDNF, NGF, and NT-3. Despite a slight increase in transcript level of GDNF and VEGF after DMF preconditioning, this difference was not statistically significant. Conclusions: Our findings suggest that DMF preconditioning can enhance the expression of major neurotrophic factors in human BM-MSCs. Given the curative potential of both BM-MSCs and DMF in various neurological disease models and preconditioning outcomes, their combined use may synergistically enhance their neuroprotective properties.

12.
J Biomed Mater Res A ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228141

RESUMEN

Early healing of bone defects is still a clinical challenge. Many bone-filling materials have been studied, among which photocrosslinked alginate has received significant attention due to its good biocompatibility and morphological plasticity. Although it has been confirmed that photocrosslinked alginate can be used as an extracellular matrix for 3D cell culture, it lacks osteogenesis-related biological functions. This study constructed a copper ions-photo dual-crosslinked alginate hydrogel scaffold by controlling the copper ion concentration. The scaffolds were shaped by photocrosslinking and then endowed with biological functions by copper ions crosslinking. According to in vitro research, the dual-crosslinked hydrogel increased the compressive strength and favored copper dose-dependent osteoblast differentiation and cell surface adherence of rat bone marrow mesenchymal stem cells and the expression of type I collagen (Col1), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), vascular endothelial growth factor (VEGF). In addition, hydrogel scaffolds were implanted into rat skull defects, and more angiogenesis and osteogenesis could be observed in in vivo studies. The above results show that the copper-photo-crosslinked hydrogel scaffold has excellent osseointegration properties and can potentially promote angiogenesis and early healing of bone defects, providing a reference solution for bone tissue engineering materials.

13.
World J Stem Cells ; 16(8): 799-810, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39219723

RESUMEN

Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.

14.
Cureus ; 16(7): e65863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39219960

RESUMEN

Extramedullary solitary plasmacytoma (SP) is an uncommon tumor and is even rare in the head and neck locations. Here, we report the case of an 82-year-old man admitted to our department for the management of nasal cavity SP. Radiological investigation showed a locally advanced tumor making the patient a non-candidate for surgery. The patient had undergone radiotherapy alone to a total dose of 50 Gy, with 2 Gy per fraction five days a week. After a follow-up of nine months, the tumor recurred, and the patient was managed in the internal medicine department. He received palliative chemotherapy with the cyclophosphamide, dexamethasone, and thalidomide protocol which resulted in a good response. This case illustrates the diagnostic challenges and treatment complexities of SP, particularly in rare locations such as the nasal cavity.

15.
Radiol Case Rep ; 19(10): 4578-4582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39220787

RESUMEN

Ghosal hematodiaphyseal dysplasia (GHDD) is a rare autosomal recessive disorder characterized by increased bone density involving diaphyses of long bones and defective hematopoiesis. It is due to biallelic variants in the TBXAS1 (OMIM*274180) gene, which encodes for thromboxane synthase. We present a rare case of a middle-aged woman who presented with chronic anemia and bone pain. About 31-year-old Southeast Asian female with a history of persistent iron deficiency anemia (6.1 gm/dL) presents with bilateral knee pain for 4 years. Autoimmune panel turned out to be negative. CT scan of the lower limbs showed multilamellated endosteal thickening specifically involving diaphyses with severe narrowing of medullary canal. PET CT scan revealed tubular remodeling, intramedullary ground glass matrix, and mild cortical thickening with increased FDG uptake in diaphyseal regions of femur and tibia. Bone marrow biopsy of left tibia revealed fibrocellular marrow with dyserythropoiesis. Considering the slow progression of illness over 4 years and radiological evidence suggestive of bone remodeling with severe narrowing of medullary canal as the cause of anemia, the patient underwent molecular analysis for GHDD. Results revealed homozygous p.Arg412Gln (exon 11) in TBXAS1 gene. Considering the effect of NSAIDs on cyclooxygenase and its downstream metabolites, oral Aspirin 150 mg/day was initiated. Hemoglobin improved to 11 gm/dL at 3-month follow-up visit. The complexity of reaching a diagnosis of GHDD underscores the importance of maintaining a high clinical suspicion and thorough analysis of radiological evidence. The treatment for GHDD involves aspirin, a readily available drug.

16.
Tissue Cell ; 91: 102543, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232355

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that affects the angiogenesis and myelination of peripheral nerves. In this study, we investigated the potential of mesenchymal stem cells (MSCs) transplantation to improve DPN by enhancing angiogenesis and remyelination in the sciatic nerve of streptozotocin (STZ)-induced diabetic female rats. The purpose of this study was to evaluate the therapeutic potential of mesenchymal stem cells as a possiblity for clinical intervention to alleviate the symptoms of diabetic peripheral neuropathy. We examined whether transplanted mesenchymal stem cells can produce new and restored angiogenesis, as well as promoting myelination. Overall, our findings suggest that MSCs transplantation has neuroprotective effects. This is particularly the case for Schwann cells. Transplantation may stimulate angiogenesis as well as remyelination of the sciatic nerve in experimentally-induced diabetic peripheral neuropathy. Behavioral assays, histological analysis, and molecular techniques were used to assess the effects of MSCs transplantation. Our results demonstrate that in diabetic rats signs of neuropathy were reversed following a single administration of bone marrow-derived MSCs. Morphological and morphometric analysis of the sciatic nerve revealed that diabetic rats displayed structural alterations that were attenuated with MSCs transplantation.Immunostaining analysis showed increased expression of S100 and VEGF in the sciatic nerve following MSCs transplantation. Western blotting analysis also revealed elevated levels of VEGF and CD31 in rats treated with MSCs compared to diabetic rats.

17.
Br J Haematol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233474

RESUMEN

MYSM1 deficiency causes inherited bone marrow failure syndrome (IBMFS). We have previously identified an IBMFS patient with a homozygous pathogenic variant in MYSM1 who recovered from cytopenia due to spontaneous correction of one MYSM1 variant in the haematopoietic compartment, an event called somatic genetic rescue (SGR). The study of the genetic and biological aspects of the patient's haematopoietic/lymphopoietic system over a decade after SGR shows that one genetically corrected haematopoietic stem cell (HSC) can restore a healthy and stable haematopoietic system. This supports in vivo gene correction of HSCs as a promising treatment for IBMFS, including MYSM1 deficiency.

18.
Adv Sci (Weinh) ; : e2404518, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225325

RESUMEN

With the increase in the aging population, senile osteoporosis (SOP) has become a major global public health concern. Here, it is found that Prx1 and Bmi-1 co-localized in trabecular bone, bone marrow cavity, endosteum, and periosteum. Prx1-driven Bmi-1 knockout in bone-marrow mesenchymal stem cells (BMSCs) reduced bone mass and increased bone marrow adiposity by inhibiting osteoblastic bone formation, promoting osteoclastic bone resorption, downregulating the proliferation and osteogenic differentiation of BMSCs, and upregulating the adipogenic differentiation of BMSCs. However, Prx1-driven Bmi-1 overexpression showed a contrasting phenotype to Prx1-driven Bmi-1 knockout in BMSCs. Regarding mechanism, Bmi-1-RING1B bound to DNMT3A and promoted its ubiquitination and inhibited DNA methylation of Runx2 at the region from 45047012 to 45047313 bp, thus promoting the osteogenic differentiation of BMSCs. Moreover, Bmi-1-EZH2 repressed the transcription of Cebpa by promoting H3K27 trimethylation at the promoter region -1605 to -1596 bp, thus inhibiting the adipogenic differentiation of BMSCs. It is also found that Prx1-driven Bmi-1 overexpression rescued the SOP induced by Prx1-driven Bmi-1 knockout in BMSCs. Thus, Bmi-1 functioned as a hub protein in the epigenetic regulation of BMSCs differentiation to delay bone aging. The Prx1-driven Bmi-1 overexpression in BMSCs can be used as an approach for the translational therapy of SOP.

19.
Pain Rep ; 9(5): e1181, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39300992

RESUMEN

Background: Lumbar facet joint arthropathy (LFJA) is a major cause of low back pain (LBP), with current treatments offering limited long-term benefits. Bone marrow-derived mesenchymal stem cells (BM-MSCs) show promise due to their immunomodulatory and trophic effects, potentially addressing underlying degenerative processes in LFJA. Objectives: This initial report describes the outcomes of the first treated patient in an ongoing mutidisciplinary phase 1 clinical trial evaluating the safety and feasibility of intra-articular allogeneic BM-MSCs for painful LFJA. Methods: Following enrollment in our IRB-approved protocol, symptomatic LFJA was confirmed through double blocks on L4 and L5 medial branches. Two 1-mL syringes, each containing 10 million BM-MSCs, were prepared in the cGMP facility and administered bilaterally to the patient's L4-L5 lumbar facet joints. The patient underwent standardized follow-ups, including clinical examinations and functional and imaging assessments for 2 years, utilizing patient-reported outcomes measurement information system-computer adaptive tests (PROMIS CATs), visual analogue scale, Oswestry disability index, work functional status and opioid pain medication use, and MR imaging Fenton-Czervionke score. Results: The patient tolerated the procedure well, with no drug-related adverse events during the study period. Pain, spine function, and work functional status improved at multiple follow-ups. This patient also reported improvements in mental and social health, along with a notable improvement in the grade of facet synovitis observed at the one-year follow-up MRI evaluation. Conclusions: This case report suggests the safety and feasibility of administering intra-articular allogeneic BM-MSCs, offering therapeutic benefits for pain management and functional activities.

20.
Neuroscience ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306318

RESUMEN

Over the years, the neuroprotective potential of bone marrow mesenchymal stem cells (BMSCs) in acute ischemic stroke has attracted significant attention. However, BMSCs face challenges like short metabolic cycles and low survival rates post-transplant. Polypyrimidine tract-binding protein 1 (PTBP1) is an immunomodulatory RNA-binding protein that regulates the cell cycle and increases cell viability. This study investigated the protective effects and underlying mechanism of PTBP1 knockdown in BMSCs (PTBP1KD-BMSCs) following ischemia-reperfusion injury (IRI) in neurons. BMSCs were isolated from Sprague-Dawley rat femurs and characterized through flow cytometry and differentiation induction. PTBP1 knockdown inhibited BMSCs proliferation. Co-culture with PTBP1KD-BMSCs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while increasing glutathione (GSH) production in oxygen and glucose deprivation/reperfusion-induced PC12 cells. Transcriptome sequencing analysis of PC12 cells suggested that the protective effect of PTBP1KD-BMSCs against injury may involve ferroptosis. Furthermore, western blotting showed upregulation of glutathione synthetase (GSS), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in PTBP1KD-BMSCs, known negative regulators of ferroptosis. Moreover, PTBP1KD-BMSCs inhibited p38MAPK and JNK activation. In addition, PTBP1KD-BMSCs transplantation into middle cerebral artery occlusion/reperfusion (MCAO/R) rats reduced cerebral infarction volume and improved neurological function. Immunofluorescence analysis confirmed the upregulation of GSS expression in neurons of the ischemic cortex, while immunohistochemistry indicated a downregulation of p-P38. These result suggest that PTBP1KD-BMSCs can alleviate neuronal IRI by reducing oxidative stress, inhibiting ferroptosis, and modulating the MAPK pathway, providing a theoretical basis for potential treatment strategies for cerebral IRI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA