Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Biochem Genet ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117934

RESUMEN

Tc1/mariner elements are ubiquitous in eukaryotic genomes including insects. They are diverse and divided into families and sub-families. The DD34D family including mauritiana and irritans subfamilies have already been identified in two closely related species of Cecidomyiids M. destructor and M. hordei. In the current study the de novo and similarity-based methods allowed the identification for the first time of seven consensuses in M. destructor and two consensuses in M. hordei belonging to DD41D family whereas the in vitro method allowed the amplification of two and three elements in these two species respectively. Most of identified elements accumulated different mutations and long deletions spanning the N-terminal region of the transposase. Phylogenetic analyses showed that the DD41D elements were clustered in two groups belonging to rosa and Long-TIR subfamilies. The age estimation of the last transposition events of the identified Tc1/mariner elements in M. destructor showed different evolutionary histories. Indeed, irritans elements have oscillated between periods of silencing and reappearance while rosa and mauritiana elements have shown regular activity with large recent bursts. The study of insertion sites showed that they are mostly intronic and that some recently transposed elements occurred in genes linked to putative DNA-binding domains and enzymes involved in metabolic chains. Thus, this study gave evidence of the existence of DD41D family in two Mayetiola species and an insight on their evolutionary history.

2.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843831

RESUMEN

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Asunto(s)
Elementos Transponibles de ADN , Humanos , Elementos Transponibles de ADN/genética , Ingeniería Genética/métodos , Genoma Humano , Animales , Evolución Molecular
3.
Gene ; 899: 148144, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38195050

RESUMEN

Aphids and ants are mutualistic species with a close space-time relationship, which may facilitate the occurrence of horizontal transfer events between these insect groups. Myrmar-like mariner elements were previously isolated from two ant (Myrmica ruginodis and Tapinoma ibericum) and two aphid species (Aphis fabae and Aphis hederae). The aim of this work is to determine the presence of Myrmar-like mariner elements in new ant and aphid species, as well as to analyze the likelihood of horizontal transfer events between these taxa. To accomplish this, the Myrmar-like element has been isolated from five aphid species and six ant species. Among these new analyzed species, full-length Myrmar-like mariner elements with very high sequence similarity have been isolated from the aphids Aphis nerii, Aphis spiraecola, Brachycaudus cardui, and Rhopalosiphum maidis as well as from the ants Lasius grandis and Lasius niger, even though aphids and ants belong to two insect orders (Hemiptera and Hymenoptera) that have evolved independently for at least 300 million-years. Both Lasius species establish frequent mutualistic relationships with multiple aphid species, including A. nerii, A. spiraecola, and B. cardui. The study of the putative protein encoded by them and the phylogenetic analysis suggests that they could be active transposons shared by aphids and ants through horizontal transfer events. Additionally, mariner elements with internal deletion were found in several aphids and one ant species, showing a high degree of sequence similarity among them. The characteristics of these elements with internal deletion suggest a complex origin involving various evolutionary processes, possibly including also horizontal transfer events. Myrmar-like elements have also been isolated from the other ant species, although without similarity with the aphid mariner sequences. Myrmar-like elements are also present in phylogenetically distant insect species, as well as in one crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the probable occurrence of horizontal transfer events.


Asunto(s)
Hormigas , Áfidos , Animales , Hormigas/genética , Áfidos/genética , Elementos Transponibles de ADN/genética , Filogenia , Simbiosis/genética
4.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38092066

RESUMEN

Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Genoma , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma X , Elementos Transponibles de ADN/genética , Filogenia
5.
Mol Phylogenet Evol ; 188: 107906, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37586577

RESUMEN

DNA transposons play a crucial role in determining the size and structure of eukaryotic genomes. In this study, a new family of IS630-Tc1-mariner (ITm) DNA transposons, named Hiker (HK), was identified. HK is characterized by a DD35E catalytic domain and is distinct from all previously known families of the ITm group. Phylogenetic analyses showed that DD35E/Hiker forms a monophyletic clade with DD34E/Gambol, indicating that they may represent a separate superfamily of ITm. A total of 178 Hiker species were identified, with 170 found mainly in Actinopterygii, one in Chondrichthyes, six in Anura and one in Mollusca. Gambol (GM), on the other hand, are found in invertebrates, with 18 in Arthropoda and one in Platyhelminthes. Hiker transposons have a total length ranging from 2.14 to 3.67 kb and contain a single open reading frame that encodes a protein of approximately 370 amino acids (range 311-413 aa). They are flanked by short terminal inverted repeats (TIRs) of 16-30 base pairs and two base pair (TA) target-site duplications. In contrast, most transposons of the Gambol family have a total length of 1.35-5.96 kb, encode a transposase protein of approximately 350 amino acids (range 306-374 aa), and are flanked by TIRs that range from 32 to 1097 bp in length. Both Hiker and Gambol transposases have several conserved motifs, including helix-turn-helix (HTH) motifs and a DDE domain. Our study observed multiple amplification waves and repeated horizontal transfer (HT) events of HK transposons in vertebrate genomes, indicating their role in diversifying and shaping the genomes of Actinopterygii, Chondrichthyes, and Anura. Conversely, GM transposons showed few Horizontal transfer events. According to cell-based transposition assays, most HK transposons are likely inactive due to the truncated DNA binding domains of their transposases. We present an updated classification of the ITm group based on these findings, which will enhance the understanding of both the evolution of ITm transposons and that of their hosts.


Asunto(s)
Elementos Transponibles de ADN , Transposasas , Animales , Elementos Transponibles de ADN/genética , Filogenia , Transposasas/genética , Células Eucariotas/metabolismo , Moluscos/genética
6.
Funct Integr Genomics ; 23(3): 244, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37454326

RESUMEN

Transposable elements exert a significant effect on the size and structure of eukaryotic genomes. Tc1/mariner superfamily elements represent the widely distributed and highly variable group of DNA transposons. Tc1/mariner elements include TLE/DD34-38E, MLE/DD34D, maT/DD37D, Visitor/DD41D, Guest/DD39D, mosquito/DD37E, and L18/DD37E families, all of which are well or less scarcely studied. However, more detailed research into the patterns of prevalence and diversity of Tc1/mariner transposons enables one to better understand the coevolution of the TEs and the eukaryotic genomes. We performed a detailed analysis of the maT/DD37D family in Cnidaria. The study of 77 genomic assemblies demonstrated that maT transposons are found in a limited number of cnidarian species belonging to classes Cubozoa (1 species), Hydrozoa (3 species) и Scyphozoa (5 species) only. The identified TEs were classified into 5 clades, with the representatives from Pelagiidae (class Scyphozoa) forming a separate clade of maT transposons, which has never been described previously. The potentially functional copies of maT transposons were identified in the hydrae. The phylogenetic analysis and the studies of distribution among the taxons and the evolutionary dynamics of the elements suggest that maT transposons of the cnidarians are the descendants of several independent invasion events occurring at different periods of time. We also established that the TEs of mosquito/DD37E family are found in Hydridae (class Hydrozoa) only. A comparison of maT and mosquito prevalence in two genomic assemblies of Hydra viridissima revealed obvious differences, thus demonstrating that each individual organism might carry a unique mobilome pattern. The results of the presented research make us better understand the diversity and evolution of Tc1/mariner transposons and their effect on the eukaryotic genomes.


Asunto(s)
Cnidarios , Culicidae , Humanos , Animales , Culicidae/genética , Cnidarios/genética , Filogenia , Elementos Transponibles de ADN , Evolución Molecular
7.
Genes (Basel) ; 14(7)2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37510284

RESUMEN

Diverse Tc1/mariner elements with the DD37E signature have been detected. However, their evolutionary relationship and profiles are largely unknown. Using bioinformatics methods, we defined the evolution profile of a Tc1/Mariner family, which harbors the catalytic domain with the DD37E signature, and renamed it DD37E/Mosquito (MS). MS transposons form a separate monophyletic clade in the phylogenetic tree, distinct from the other two groups of elements with the DD37E signature, DD37E/L18 and DD37E/TRT (transposon related to Tc1), and represent a very different taxonomic distribution from that of DD37E/TRT. MS is only detected in invertebrate and is mostly present in Arthropoda, as well as in Cnidaria, Ctenophora, Mollusca, Nematoda, and Platyhelminthes, with a total length of about 1.3 kb, containing an open reading frame (ORF) encoding about 340 amino acids transposases, with a conserved DD37E catalytic domain. The terminal inverted repeat (TIR) lengths range from 19 bp to 203 bp, and the target site duplication (TSD) is TA. We also identified few occurrences of MS horizontal transfers (HT) across lineages of diptera. In this paper, the distribution characteristics, structural characteristics, phylogenetic evolution, and horizontal transfer of the MS family are fully analyzed, which is conducive to supplementing and improving the Tc1/Mariner superfamily and excavating active transposons.


Asunto(s)
Elementos Transponibles de ADN , Animales , Elementos Transponibles de ADN/genética , Filogenia , Artrópodos/genética , Cnidarios/genética , Ctenóforos/genética , Moluscos/genética , Nematodos/genética , Platelmintos/genética
8.
Ann Biomed Eng ; 51(6): 1123-1125, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37040060

RESUMEN

The maritime industry is vital to international trade, however, it also poses inimitable challenges to the health and well-being of mariners. Long voyages at sea might make it grim to receive high-quality healthcare. This is a descriptive study that highlights the use of ChatGPT in providing healthcare amenities to mariners. AI technologies can revolutionize maritime healthcare to tackle this issue. ChatGPT, a state-of-the-art AI system developed by OpenAI can provide valuable support for the health and welfare of seafarers'. By harnessing the extensive expertise and conversational capacities of ChatGPT, maritime industries can provide personalized and prompt healthcare services to their stakeholders. This research work will highlight how ChatGPT-powered healthcare services can boost the health and well-being of seafarers. ChatGPT has the potential to revolutionize the marine sector by enabling virtual consultations with healthcare professionals for the analysis of health data. The assimilation of ChatGPT technology into maritime healthcare has the potential to revolutionize the way seafarers receive care and support. Certainly, some challenges need to be taken into consideration.


Asunto(s)
Salud Laboral , Navíos , Humanos , Comercio , Internacionalidad , Atención a la Salud
9.
Life (Basel) ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36983793

RESUMEN

Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.

10.
Genes (Basel) ; 13(12)2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36553507

RESUMEN

Both ZeBrafish (ZB), a recently identified DNA transposon in the zebrafish genome, and SB, a reconstructed transposon originally discovered in several fish species, are known to exhibit high transposition activity in vertebrate cells. Although a similar structural organization was observed for ZB and SB transposons, the evolutionary profiles of their homologs in various species remain unknown. In the present study, we compared their taxonomic ranges, structural arrangements, sequence identities, evolution dynamics, and horizontal transfer occurrences in vertebrates. In total, 629 ZB and 366 SB homologs were obtained and classified into four distinct clades, named ZB, ZB-like, SB, and SB-like. They displayed narrow taxonomic distributions in eukaryotes, and were mostly found in vertebrates, Actinopterygii in particular tended to be the major reservoir hosts of these transposons. Similar structural features and high sequence identities were observed for transposons and transposase, notably homologous to the SB and ZB elements. The genomic sequences that flank the ZB and SB transposons in the genomes revealed highly conserved integration profiles with strong preferential integration into AT repeats. Both SB and ZB transposons experienced horizontal transfer (HT) events, which were most common in Actinopterygii. Our current study helps to increase our understanding of the evolutionary properties and histories of SB and ZB transposon families in animals.


Asunto(s)
Elementos Transponibles de ADN , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Elementos Transponibles de ADN/genética , Transposasas/genética
11.
Genes (Basel) ; 13(12)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553641

RESUMEN

Transposable elements (TEs) are abundant in genomes. Their mobilization can lead to genetic variability that is useful for evolution, but can also have deleterious biological effects. Somatic mobilization (SM) has been linked to degenerative diseases, such as Alzheimer's disease and cancer. We used a Drosophila simulans strain, in which SM can be measured by counting red spots in the eyes, to investigate how chemotherapeutic agents affect expression and SM of the mariner TE. Flies were treated with Cisplatin, Dacarbazine, and Daunorubicin. After acute exposure, relative expression of mariner was quantified by RT-qPCR and oxidative stress was measured by biochemical assays. Exposure to 50 and 100 µg/mL Cisplatin increased mariner expression and ROS levels; catalase activity increased at 100 µg/mL. With chronic exposure, the number of spots also increased, indicating higher mariner SM. Dacarbazine (50 and 100 µg/mL) did not significantly alter mariner expression or mobilization or ROS levels, but decreased catalase activity (100 µg/mL). Daunorubicin (25 and 50 µM) increased mariner expression, but decreased mariner SM. ROS and catalase activity were also reduced. Our data suggest that stress factors may differentially affect the expression and SM of TEs. The increase in mariner transposase gene expression is necessary, but not sufficient for mariner SM.


Asunto(s)
Elementos Transponibles de ADN , Drosophila simulans , Animales , Elementos Transponibles de ADN/genética , Drosophila/genética , Catalasa/genética , Cisplatino , Especies Reactivas de Oxígeno
12.
J Microbiol Methods ; 203: 106623, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400246

RESUMEN

Bartonella bacilliformis is the etiologic agent of Carrión's disease in South America. Lack of a system for random mutagenesis has significantly hampered research on the pathogen's molecular biology. Here, we describe a transposon (Tn)-based mutagenesis strategy for B. bacilliformis using pSAM_Rl; a Tn-mariner delivery vector originally constructed for members of the Rhizobiaceae family. Following electroporation of the vector, five candidate mutant strains were selected based on aberrant colony morphologies, and four mutations confirmed and identified using arbitrarily-primed PCR coupled with Sanger sequencing. One mutant strain, 4B2, was found to have a disrupted flgI gene, encoding the P-ring component of the flagellar motor. We therefore investigated the flgI strain's motility phenotype in a novel motility medium and found that insertional mutagenesis produced a non-motile mutant. Taken as a whole, the results show that: 1) pSAM_R1 is a practical Tn delivery vector for B. bacilliformis, 2) the plasmid can be used to create random Tn mariner mutants, 3) arbitrarily-primed PCR coupled with Sanger sequencing is a rapid and simple method for identifying and locating mutations generated by this Tn, and 4) in silico-predicted mutant phenotypes can be verified in vitro following mutagenesis. This system of Tn mutagenesis and mutation identification provides a novel and straightforward approach to investigate the molecular biology of B. bacilliformis.


Asunto(s)
Infecciones por Bartonella , Bartonella bacilliformis , Humanos , Mutación , Mutagénesis Insercional , Biología Molecular
13.
Front Plant Sci ; 13: 1004732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340339

RESUMEN

Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.

14.
Int Marit Health ; 73(3): 143-149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36217970

RESUMEN

BACKGROUND: Quality of shipboard life plays a significant role, as for a seafarer the ship is both his workplace and home for extended periods. Physical, psychological, social and environmental factors have a substantial impact on the seafarers' quality of life and work. The aim of the study was to analyse the domains determining the factors associated with the seafarers' quality of life at Kochi Port, India. MATERIALS AND METHODS: This was a cross-sectional study in which 302 Indian seafarers took part in the research and was conducted in January-February, 2020. WHOQOL-BREF scale was used to explore the four domains of quality of life, and the participants had to rate their perceived satisfaction in each of the domains. The trained researcher conducted a face-to-face interview session using a structured questionnaire. Bivariate and multivariate analysis was used to determine associations and predictors for quality of life, respectively. RESULTS: The majority (80%) of the seafarers were married and were from a rural area (74%). The mean score (standard deviation) was highest for the psychological domain 70.9 (10.5), followed by environmental domain 69.9 (13.2), social relations domain 68.5 (16.9) and physical domain 61.2 (12.8), respectively. A significant association was found between age and the psychological domain (p < 0.05). At the same time, the area of residence had a significant association with physical and psychological domains whereas marital status with physical, psychological and environmental domains (p < 0.05). Daily working hours had a significant association with psychological domains and work experience with the physical and psychological domains (p < 0.05). CONCLUSIONS: The findings of this study are an indication for the health policy makers to focus on interventions for improving the quality of life among the seafarers and would also help in enhancing healthy work environments for them.


Asunto(s)
Calidad de Vida , Navíos , Estudios Transversales , Gobierno , Humanos , Calidad de Vida/psicología , Encuestas y Cuestionarios
15.
Insects ; 13(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36005323

RESUMEN

Transposable elements (TEs) are grouped into several families with diverse sequences. Owing to their diversity, studies involving the detection, classification, and annotation of TEs are difficult tasks. Moreover, simple comparisons of TEs among different species with different methods can lead to misinterpretations. The genome data of several honey bee (Apis) species are available in public databases. Therefore, we conducted a meta-analysis of TEs, using 11 sets of genome data for Apis species, in order to establish data of "landscape of TEs". Consensus TE sequences were constructed and their distributions in the Apis genomes were determined. Our results showed that TEs belonged to four to seven TE families among 13 and 15 families of TEs detected in classes I and II respectively mainly consisted of Apis TEs and that more DNA/TcMar-Mariner consensus sequences and copies were present in all Apis genomes tested. In addition, more consensus sequences and copy numbers of DNA/TcMar-Mariner were detected in Apis mellifera than in other Apis species. These results suggest that TcMar-Mariner might exert A. mellifera-specific effects on the host A. mellifera species. In conclusion, our unified approach enabled comparison of Apis genome sequences to determine the TE landscape, which provide novel evolutionary insights into Apis species.

16.
Biology (Basel) ; 11(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35625459

RESUMEN

Horizontal transfer of transposons (HTT) is an essential source of genomic evolution in eukaryotes. The HTT dynamics are well characterized in eukaryotes, including insects; however, there is a considerable gap in knowledge about HTT regarding many eukaryotes' species. In this study, we analyzed the events of the HTT between Rhus gall aphids (Hemiptera) and other insects. We analyzed the Mariner-like transposable elements (MLEs) belonging to Rhus gall aphids for the possible HT events. The MLEs have a patchy distribution and high similarity over the entire element length with insect MLEs from different orders. We selected representative sequences from the Rhus gall MLEs and identified five events of HT between MLEs of Rhus gall aphids and other insects from five different orders. We also found multiple HTT events among the MLEs of insects from the five orders, demonstrating that these Mariner elements have been involved in recurrent HT between Rhus gall aphids and other insects. Our current study closed the knowledge gap surrounding HTT and reported the events between Rhus gall aphids and other insects for the first time. We believe that this study about HTT events will help us understand the evolution and spread of transposable elements in the genomes of Rhus gall aphids.

17.
Mol Biol (Mosk) ; 56(3): 476-490, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35621103

RESUMEN

Transposable elements have a significant impact on the structure and functioning of multicellular genomes, and also serve as a source of new genes. Studying the diversity and evolution of transposable elements in different taxa is necessary for the fundamental understanding of their role in genomes. The Tc1/mariner elements are one of the most widespread and diverse groups of DNA transposons. In this work, the structure, distribution, diversity, and evolution of the L18 (DD37E) elements in the genomes of cnidarians (Cnidaria) were studied for the first time. As a result, it was found that the L18 group is an independent family (and not a subfamily of the TLE family, as previously thought) in the Tc1/mariner superfamily. Of the 51 detected elements, only four had potentially functional copies. It is assumed that the L18 transposons are of ancient origin, and, in addition, the elements found in the genomes of organisms of the Anthozoa and Hydrozoa classes do not come from a common ancestral transposon within the Cnidaria phylum. In organisms of the Hydrozoa class, L18 transposons appeared as a result of horizontal transfer at a later time period. An intraspecies comparison of the diversity of the L18 elements demonstrates high homogeneity with respect to "old" transposons, which have already lost their activity. At the same time, distant populations, as in the case of Hydra viridissima, have differences in the representation of DNA transposons and the number of copies. These data supplement the knowledge on the diversity and evolution of Tc1/mariner transposons and contribute to the study of the influence of mobile genetic elements on the evolution of multicellular organisms.


Asunto(s)
Cnidarios , Elementos Transponibles de ADN , Animales , Cnidarios/genética , Elementos Transponibles de ADN/genética , Prevalencia
18.
Insects ; 13(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35621789

RESUMEN

Although transposable elements (TEs) are usually silent in somatic tissues, they are sometimes mobilized in the soma and can potentially have biological consequences. The mariner element is one of the TEs involved in somatic mobilization (SM) in Drosophila and has a high rate of somatic excision. It is also known that temperature is an important factor in the increase of the mariner element SM in the fly. However, it is important to emphasize that excision is only one step of TE transposition, and the final step in this process is insertion. In the present study, we used an assay based on sequencing of the mariner flanking region and developed a pipeline to identify novel mariner insertions in Drosophila simulans at 20 and 28 °C. We found that flies carrying two mariner copies (one autonomous and one non-autonomous) had an average of 236.4 (±99.3) to 279 (±107.7) new somatic insertions at 20 °C and an average of 172.7 (±95.3) to 252.6 (±67.3) at 28 °C. In addition, we detected fragments containing mariner and others without mariner in the same regions with low-coverage long-read sequencing, indicating the process of excision and insertion. In conclusion, a low number of autonomous copies of the mariner transposon can promote a high rate of new somatic insertions during the developmental stages of Drosophila. Additionally, the developed method seems to be sensitive and adequate for the verification and estimation of somatic insertion.

19.
Anim Dis ; 1(1): 29, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34870287

RESUMEN

Comprehensive identification of conditionally essential genes requires efficient tools for generating high-density transposon libraries that, ideally, can be analysed using next-generation sequencing methods such as Transposon Directed Insertion-site Sequencing (TraDIS). The Himar1 (mariner) transposon is ideal for generating near-saturating mutant libraries, especially in AT-rich chromosomes, as the requirement for integration is a TA dinucleotide, and this transposon has been used for mutagenesis of a wide variety of bacteria. However, plasmids for mariner delivery do not necessarily work well in all bacteria. In particular, there are limited tools for functional genomic analysis of Pasteurellaceae species of major veterinary importance, such as swine and cattle pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, respectively. Here, we developed plasmids, pTsodCPC9 and pTlacPC9 (differing only in the promoter driving expression of the transposase gene), that allow delivery of mariner into both these pathogens, but which should also be applicable to a wider range of bacteria. Using the pTlacPC9 vector, we have generated, for the first time, saturating mariner mutant libraries in both A. pleuropneumoniae and P. multocida that showed a near random distribution of insertions around the respective chromosomes as detected by TraDIS. A preliminary screen of 5000 mutants each identified 8 and 14 genes, respectively, that are required for growth under anaerobic conditions. Future high-throughput screening of the generated libraries will facilitate identification of mutants required for growth under different conditions, including in vivo, highlighting key virulence factors and pathways that can be exploited for development of novel therapeutics and vaccines.

20.
Genes (Basel) ; 12(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34946915

RESUMEN

Aphids (Hemiptera, Aphididae) are small phytophagous insects. The aim of this study was to determine if the mariner elements found in the ant genomes are also present in Aphis fabae and Aphis hederae genomes and the possible existence of horizontal transfer events. Aphids maintain a relationship of mutualism with the ants. The close contact between these insects could favour horizontal transfer events of transposable elements. Myrmar mariner element isolated from Myrmica ruginodis and Tapinoma ibericum ants have also been found in the two Aphis species: A. fabae and A. hederae (Afabmar-Mr and Ahedmar-Mr elements). Besides, Afabmar-Mr could be an active transposon. Myrmar-like elements are also present in other insect species as well as in one Crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the existence of horizontal transfer. Most aphids have 2n = 8 with a XX-X0 sex determination system. Their complicated life cycle is mostly parthenogenetic with sexual individuals only in autumn. The production of X0 males, originated by XX females which produce only spermatozoa with one X chromosome, must necessarily occur through specialized cytogenetic and molecular mechanisms which are not entirely known. In both aphid species, the mariner elements are located on all chromosomes, including the X chromosomes. However, on the two X chromosomes, no positive signals are detected in their small DAPI-negative telomere regions. The rDNA sites are located, as in the majority of Aphids species, on one of the telomere regions of each X chromosome. The hybridization patterns obtained by double FISH demonstrate that Afabmar-Mr and Ahedmar-Mr elements do not hybridize at the rDNA sites of their host species. Possible causes for the absence of these transposons in the rDNA genes are discussed, probably related with the X chromosome biology.


Asunto(s)
Hormigas/genética , Áfidos/genética , Cromosomas de Insectos/genética , Elementos Transponibles de ADN , Genoma de los Insectos , Simbiosis , Animales , Hormigas/crecimiento & desarrollo , Áfidos/crecimiento & desarrollo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA