Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMC Ecol Evol ; 24(1): 108, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143507

RESUMEN

It has been widely demonstrated that air and sand temperatures influence the anatomy of sea turtle hatchlings. We examined the impact of precipitation during the nesting season on the hatchling body size of loggerhead and green turtles from 37 beaches worldwide. Longitudinal data collected between 2012 and 2018 from Florida (US) and from a sample on Bõa Vista Island (Cabo Verde) carried out in 2019 showed that loggerhead body size at hatching was negatively correlated with precipitation, while precipitation was not correlated with hatchling body size in green turtles. A meta-analysis revealed that precipitation is positively correlated with hatchling mass in loggerhead turtles, while it is positively correlated with straight carapace length and width in green turtle hatchlings. The strongest influence of precipitation was found in the middle of the incubation period of loggerhead turtles in Cabo Verde, and we posit that this is due to an increase in the uptake of water for embryonic growth. These findings highlight the great importance of understanding the correlated effects of regional environmental variables, such as precipitation, on the development of sea turtle hatchlings and will have an impact on the evaluation of ongoing conservation and climate change discussions.


Asunto(s)
Tamaño Corporal , Tortugas , Animales , Tortugas/fisiología , Tortugas/crecimiento & desarrollo , Tamaño Corporal/fisiología , Lluvia , Florida , Clima
2.
Mar Pollut Bull ; 201: 116141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401386

RESUMEN

The loggerhead turtle (Caretta caretta) has been suggested as a bio-indicator species for plastic pollution. However, detailed investigations in the eastern Mediterranean are limited. Here, we present data from loggerhead turtles (2012-2022; n = 131) of which 42.7 % (n = 57) had ingested macroplastic (pieces ≥ 5 mm). Frequency of occurrence (%) was not found to have changed over time, with body size (CCL cm), between stranded or bycaught turtles, or with levels of digesta present. The characteristics of ingested plastic (n = 492) were largely sheetlike (62 %), clear (41 %) or white (25 %) and the most common polymers identified were Polypropylene (37 %) and Polyethylene (35 %). Strong selectivity was displayed towards certain types, colours and shapes. Data are also presented for posthatchling turtles (n = 4), an understudied life stage. Much larger sample sizes will be needed for this species to be an effective bio-indicator, with the consideration of monitoring green turtles (Chelonia mydas) for the eastern Mediterranean recommended allowing a more holistic picture to be gathered.


Asunto(s)
Tortugas , Animales , Contenido Digestivo , Plásticos , Contaminación Ambiental , Monitoreo del Ambiente
3.
Glob Chang Biol ; 30(1): e16991, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37905464

RESUMEN

Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a "middle of the road" scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from -20 to -191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.


Asunto(s)
Tortugas , Animales , Tortugas/fisiología , Temperatura , Cambio Climático , Reproducción , Razón de Masculinidad
4.
Glob Chang Biol ; 30(1): e17004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37961789

RESUMEN

Climate warming and the feminization of populations due to temperature-dependent sex determination may threaten sea turtles with extinction. To identify sites of heightened risk, we examined sex ratio data and patterns of climate change over multiple decades for 64 nesting sites spread across the globe. Over the last 62 years the mean change in air temperature was 0.85°C per century (SD = 0.65°C, range = -0.53 to +2.5°C, n = 64 nesting sites). Temperatures increased at 40 of the 64 study sites. Female-skewed hatchling or juvenile sex ratios occurred at 57 of the 64 sites, with skews >90% female at 17 sites. We did not uncover a relationship between the extent of warming and sex ratio (r62 = -0.03, p = .802, n = 64 nesting sites). Hence, our results suggest that female-hatchling sex ratio skews are not simply a consequence of recent warming but have likely persisted at some sites for many decades. So other factors aside from recent warming must drive these variations in sex ratios across nesting sites, such as variations in nesting behaviour (e.g. nest depth), substrate (e.g. sand albedo), shading available and rainfall patterns. While overall across sites recent warming is not linked to hatchling sex ratio, at some sites there is both is a high female skew and high warming, such as Raine Island (Australia; 99% female green turtles; 1.27°C warming per century), nesting beaches in Cyprus (97.1% female green turtles; 1.68°C warming per century) and in the Dutch Caribbean (St Eustatius; 91.5% female leatherback turtles; 1.15°C warming per century). These may be among the first sites where management intervention is needed to increase male production. Continued monitoring of sand temperatures and sex ratios are recommended to help identify when high incubation temperatures threaten population viability.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Razón de Masculinidad , Arena , Temperatura , Cambio Climático
5.
Ecol Evol ; 13(11): e10741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034330

RESUMEN

Sympatric species may overlap in their use of habitat and dietary resources, which can increase competition. Comparing the ecological niches and quantifying the degree of niche overlap among these species can provide insights into the extent of resource overlap. This information can be used to guide multispecies management approaches tailored to protect priority habitats that offer the most resources for multiple species. Stable isotope analysis is a valuable tool used to investigate spatial and trophic niches, though few studies have employed this method for comparisons among sympatric marine turtle species. For this study, stable carbon, nitrogen, and sulfur isotope values from epidermis tissue were used to quantify isotopic overlap and compare isotopic niche size in loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp's ridley (Lepidochelys kempii) turtles sampled from a shared foraging area located offshore of Crystal River, Florida, USA. Overall, the results revealed high degrees of isotopic overlap (>68%) among species, particularly between loggerhead and Kemp's ridley turtles (85 to 91%), which indicates there may be interspecific competition for resources. Samples from green turtles had the widest range of isotopic values, indicating they exhibit higher variability in diet and habitat type. Samples from loggerhead turtles had the most enriched mean δ34S, suggesting they may forage in slightly different micro-environments compared with the other species. Finally, samples from Kemp's ridley turtles exhibited the smallest niche size, which is indicative of a narrower use of resources. This is one of the first studies to investigate resource use in a multispecies foraging aggregation of marine turtles using three isotopic tracers. These findings provide a foundation for future research into the foraging ecology of sympatric marine turtle species and can be used to inform effective multispecies management efforts.

6.
Glob Chang Biol ; 29(23): 6546-6557, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37795641

RESUMEN

Projection models are being increasingly used to manage threatened taxa by estimating their responses to climate change. Sea turtles are particularly susceptible to climate change as they have temperature-dependent sex determination and increased sand temperatures on nesting beaches could result in the 'feminisation' of hatchling sex ratios for some populations. This study modelled likely long-term trends in sand temperatures and hatchling sex ratios at an equatorial nesting site for endangered green turtles (Chelonia mydas) and critically endangered hawksbill turtles (Eretmochelys imbricata). A total of 1078 days of sand temperature data were collected from 28 logger deployments at nest depth between 2018 and 2022 in Papua New Guinea (PNG). Long-term trends in sand temperature were generated from a model using air temperature as an environmental proxy. The influence of rainfall and seasonal variation on sand temperature was also investigated. Between 1960 and 2019, we estimated that sand temperature increased by ~0.6°C and the average hatchling sex ratio was relatively balanced (46.2% female, SD = 10.7). No trends were observed in historical rainfall anomalies and projections indicated no further changes to rainfall until 2100. Therefore, the sex ratio models were unlikely to be influenced by changing rainfall patterns. A relatively balanced sex ratio such as this is starkly different to the extremely female-skewed hatchling sex ratio (>99% female) reported for another Coral Sea nesting site, Raine Island (~850 km West). This PNG nesting site is likely rare in the global context, as it is less threatened by climate-induced feminisation. Although there is no current need for 'cooling' interventions, the mean projected sex ratios for 2020-2100 were estimated 76%-87% female, so future interventions may be required to increase male production. Our use of long-term sand temperature and rainfall trends has advanced our understanding of climate change impacts on sea turtles.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Temperatura , Tortugas/fisiología , Arena , Cambio Climático , Estaciones del Año , Razón de Masculinidad
7.
Mar Pollut Bull ; 193: 115264, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423081

RESUMEN

Sea turtles are affected by pollutants worldwide, and the polycyclic aromatic hydrocarbons (PAHs) have been detected in different types of samples and at high levels in some cases. The present study brings concentrations of 37 PAHs in liver samples of 17 green turtles Chelonia mydas stranded in northeastern Brazil [four with cutaneous tumors of fibropapillomatosis (FP), being classified as FP+]. Six PAHs were detected in 100% of the liver samples, and all alkylated PAHs were frequently quantified. High levels of phenanthrene (771.20 and 794.43 ng g-1 d.w.) and fluorene (1882.36 ng g-1 d.w.) were found in three females FP- (without FP cutaneous tumors). On the other hand, one green turtle FP+ had the higher level of naphthalene (531.70 ng g-1 d.w.), compound detected in 82.35 % of the samples. Our study brings additional baseline of organic pollutants in green turtles, improving knowledge on bioaccumulation of these compounds in sea turtles.


Asunto(s)
Contaminantes Ambientales , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Tortugas , Animales , Femenino , Brasil , Hígado
8.
Animals (Basel) ; 13(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37106848

RESUMEN

Leatherback turtles migrate long distances between nesting beaches and distant foraging areas worldwide. This study analyzes the genetic diversity, life history stage, spatiotemporal distribution, and associated threats of a foraging aggregation in the Southwest Atlantic Ocean. A total of 242 leatherbacks stranded or bycaught by artisanal fisheries were recorded from 1997 to 2021 in Uruguay, with sizes ranging from 110.0 to 170.0 cm carapace lengths, indicating that the aggregation is composed of large juveniles and adults. Results of Bayesian mixed-stock analysis show that leatherbacks come primarily from the West African rookeries, based on mitochondrial DNA sequences obtained from 59 of the turtles representing seven haplotypes, including a novel one (Dc1.7). The main threat identified in the area is the fisheries bycatch but most of the carcasses observed were badly decomposed. There was significant seasonal and interannual variability in strandings that is likely associated with the availability of prey and the intensity of the fishing effort. Taken together, these findings reinforce the importance of these South American foraging areas for leatherbacks and the need to determine regional habitat use and migratory routes across the broader Atlantic region, in order to develop effective conservation measures to mitigate threats both at nesting beaches and foraging areas.

9.
Sci Total Environ ; 879: 163040, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965720

RESUMEN

The loggerhead sea turtle (Caretta caretta) has been selected as sentinel species by the Marine Strategy Framework Directive (MSFD) descriptor 10 in relation to marine litter. In this, and other protected species, there is a need to develop conservative pollution biomarkers equally informative of chemical exposures to those traditionally carried out in metabolic organs, such as the liver. With this aim, plasma from turtles undergoing rehabilitation at the Fundació Oceanogràfic rescue centre (Arca del Mar) were selected and tested for B-esterase measurements. Hydrolysis rates of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterases (CEs) using four commercial substrates were undertaken on 191 plasma samples. Results indicated that acetylthiocholine was the most adequate substrate of cholinesterases and butyrate esters for CE measures. The correlation of these parameters with well-established blood biochemistry measurements was analysed. B-esterase measures in wild specimens were discussed in relation to age group, pathology on admission to the rescue centre and season; moreover, contrasts with long-term resident turtles were also made. Although this study provides baseline data on B-esterase measures in a large sample size for this species, more complementary information is still needed in terms of population genetics, chemical exposures, and in relation to other biochemical parameters before they can be confidently applied in wild specimens within the regulatory MSFD.


Asunto(s)
Tortugas , Animales , Carboxilesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Estado de Salud
10.
R Soc Open Sci ; 10(2): 221002, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778962

RESUMEN

How species respond to climate change may impact their extinction probability. Here we link climatology and ecology to tackle a globally important conservation question. For sea turtles, there are concerns that climate warming will cause both the feminization of populations as well as reduced hatchling survival. For 58 nesting sites across the world spanning all seven sea turtle species, we investigated whether warming might be avoided by shifts in nesting phenology to a cooler part of the year. We show that even with the most extreme phenological shift that has been reported to date-an 18-day advance in nesting per °C increase in sea surface temperature (SST)-temperatures will continue to increase at nesting sites with climate warming. We estimate that SST at nesting sites will rise by an average of 0.6°C (standard deviation = 0.9°C, n = 58) when we model a 1.5°C rise in SST combined with a best-case-scenario shift in nesting. Since sea turtles exhibit temperature-dependent sex determination, these temperature rises could lead to increasingly female-biased sex ratios as well as reduced hatchling production at sites across the world. These findings underscore concerns for the long-term survival of this iconic group.

11.
Mol Ecol ; 32(3): 628-643, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336814

RESUMEN

Hybridization is known to be part of many species' evolutionary history. Sea turtles have a fascinating hybridization system in which species separated by as much as 43 million years are still capable of hybridizing. Indeed, the largest nesting populations in Brazil of loggerheads (Caretta caretta) and hawksbills (Eretmochelys imbricata) have a high incidence of hybrids between these two species. A third species, olive ridleys (Lepidochelys olivacea), is also known to hybridize although at a smaller scale. Here, we used restriction site-associated DNA sequencing (RAD-Seq) markers, mitogenomes, and satellite-telemetry to investigate the patterns of hybridization and introgression in the Brazilian sea turtle population and their relationship with the migratory behaviours between feeding and nesting aggregations. We also explicitly test if the mixing of two divergent genomes in sea turtle hybrids causes mitochondrial paternal leakage. We developed a new species-specific PCR-assay capable of detecting mitochondrial DNA (mtDNA) inheritance from both parental species and performed ultra-deep sequencing to estimate the abundance of each mtDNA type. Our results show that all adult hybrids are first generation (F1) and most display a loggerhead migratory behaviour. We detected paternal leakage in F1 hybrids and different proportions of mitochondria from maternal and paternal species. Although previous studies showed no significant fitness decrease in hatchlings, our results support genetically-related hybrid breakdown possibly caused by cytonuclear incompatibility. Further research on hybrids from other populations in addition to Brazil and between different species will show if backcross inviability and mitochondrial paternal leakage is observed across sea turtle species.


Asunto(s)
ADN Mitocondrial , Tortugas , Animales , ADN Mitocondrial/genética , Tortugas/genética , Mitocondrias/genética , Evolución Biológica , Reacción en Cadena de la Polimerasa
12.
Mar Pollut Bull ; 186: 114489, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549238

RESUMEN

Litter is a serious threat to the marine environment, with detrimental effects on wildlife and marine biodiversity. Limited data as a result of funding and logistical challenges in developing countries hamper our understanding of the problem. Here, we employed commercial unmanned aerial vehicle (UAV) as a cost-effective tool to study the exposure of marine turtles to floating marine litter (FML) in waters of Mayo Bay, Philippines. A quadcopter UAV was flown autonomously with on-board camera capturing videos during the flight. Still frames were extracted when either turtle or litter were detected in post-flight processing. The extracted frames were georeferenced and mapped using QGIS software. Results showed that turtles are highly exposed to FML in nearshore waters. Moreover, spatial dependence between FML and turtles was also observed. The study highlights the effectiveness of UAVs in marine litter research and underscores the threat of FML to turtles in nearshore waters.


Asunto(s)
Tortugas , Animales , Monitoreo del Ambiente/métodos , Filipinas , Fluorometolona , Dispositivos Aéreos No Tripulados , Bahías , Plásticos/análisis
13.
Biodivers Data J ; 11: e98589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327292

RESUMEN

Background: Six species of marine turtles occur in the Azores Archipelago. The loggerhead, Carettacaretta (Linnaeus, 1758), is by far the most common species and is being constantly monitored and tagged by a joint project between the University of the Azores and the University of Florida since 1989. With the implementation of the tuna fishery observers (for dolphin safe seals), an increment of sea turtle reports has been verified as expected. The leather back turtle, Dermochelyscoriacea (Vandelli, 1761) is the second most observed species in the Azores' EEZ, a fact probably also linked to the tuna fishery observation programme. All other species are occasional/vagrant albeit the green turtle, Cheloniamydas (Linnaeus, 1758) is more commonly seen than the others. Historically, sea turtles were occasionally taken for food in specific fishing villages and ports. Since 1986, sea turtles, as well as all marine mammals, are fully protected in the Azores although human-related activities (e.g. plastics, discarded fishing gear) do generate serious injuries and deaths. New information: In this paper, we update sea turtle species' checklist for the Azores and give detailed geographic coordinates on their known occurrences.

14.
Ecol Evol ; 12(11): e9548, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36447590

RESUMEN

Conservation of green sea turtles (Chelonia mydas) benefits from knowledge of population connectivity across life stages. Green turtles are managed at the level of genetically discrete rookeries, yet individuals from different rookeries mix at foraging grounds; therefore, rookeries may be impacted by processes at foraging grounds. Bimini, Bahamas, hosts an important foraging assemblage, but rookery contributions to this assemblage have never been resolved. We generated mitochondrial DNA sequences for 96 foraging green turtles from Bimini and used Mixed Stock Analysis to determine rookery contributions to this population using 817 and 490 base pair (bp) rookery baseline data. The MSA conducted with 817 bp data indicated that Quintana Roo, Mexico, and Central Eastern Florida contributed most to the Bimini population. The MSA conducted with 490 bp data indicated that Southwest Cuba and Central Eastern Florida contributed the most to Bimini. The results of the second MSA differ from a previous study undertaken with 490 bp data, conducted in Great Inagua, Bahamas, which suggested that Tortuguero, Costa Rica, contributed the most to that foraging assemblage. Large credible intervals in our results do not permit explicit interpretation of individual rookery contributions, but our results do indicate substantial relative differences in rookery contributions to two Bahamian foraging assemblages which may be driven by oceanic currents, rookery sizes, and possibly juvenile natal homing. Our findings may implicate a shift in contributions to the Bahamas over two decades, highlighting the importance of regularly monitoring rookery contributions and resolving regional recruitment patterns to inform conservation.

15.
Dis Aquat Organ ; 152: 61-71, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394141

RESUMEN

Despite being the most abundant sea turtle in the world, the olive ridley turtle Lepidochelys olivacea is classified as Vulnerable by the IUCN. There is evidence of congenital malformations in hatchlings, and the associated causes are multifactorial, with both genetic and environmental sources. Santuario Playa Ceuta (SPC) is a sanctuary for the olive ridley, located at the northernmost region of its nesting range in the Mexican Pacific. The objective of this study was to identify and quantify the prevalence and severity of congenital malformations in olive ridley embryos/hatchlings in SPC during the 2017 nesting season. We collected 62907 eggs from 643 relocated nests that were moved to a hatchery, of which 4242 eggs with obvious development did not hatch and were analyzed for this study. Hatching success was 53.9%, with 22.5% of nests (n = 145) and 0.54% of eggs (n = 344) showing embryos or hatchlings with malformations. The nest severity index was 2.4 (range: 1-10) malformed embryos or hatchlings per nest, and the organism severity index was 1.4 (range: 1-7) malformations per malformed embryo or hatchling. Leucism was the most prevalent malformation (34.4%; 170/494 total observed), with the craniofacial region showing the greatest diversity of malformations (17/35 types). Given the geographical position of SPC, extreme environmental conditions (e.g. cold, heat, and dryness) could be one of the main causes of teratogenesis in this species. However, more studies are needed regarding the presence of contaminants, genetic factors, health assessments of nesting females, and malformation rates of nests that remain in situ versus those that are relocated.


Asunto(s)
Tortugas , Femenino , Animales , México/epidemiología
16.
Animals (Basel) ; 12(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883384

RESUMEN

The olive ridley (Lepidochelys olivacea) is the most abundant of all seven sea turtles, found across the tropical regions of the Atlantic, Pacific, and Indian Oceans in over 80 different countries all around the globe. Despite being the most common and widely distributed sea turtle, olive ridley populations have been declining substantially for decades. Worldwide, olive ridleys have experienced a 30-50% decline, putting their populations at risk and being considered an Endangered Species by the IUCN. Natural habitat degradation, pollution, bycatch, climate change, predation by humans and animals, infectious diseases and illegal trade are the most notorious threats to explain olive ridley populations rapidly decline. The present review assesses the numerous dangers that the olive ridley turtle has historically faced and currently faces. To preserve olive ridleys, stronger conservation initiatives and strategies must continue to be undertaken. Policies and law enforcement for the protection of natural environments and reduction in the effects of climate change should be implemented worldwide to protect this turtle species.

17.
Ecohealth ; 19(2): 190-202, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35665871

RESUMEN

Fibropapillomatosis (FP) threatens the survival of green turtle (Chelonia mydas) populations at a global scale, and human activities are regularly pointed as causes of high FP prevalence. However, the association of ecological factors with the disease's severity in complex coastal systems has not been well established and requires further studies. Based on a set of 405 individuals caught over ten years, this preliminary study provides the first insight of FP in Martinique Island, which is a critical development area for immature green turtles. Our main results are: (i) 12.8% of the individuals were affected by FP, (ii) FP has different prevalence and temporal evolution between very close sites, (iii) green turtles are more frequently affected on the upper body part such as eyes (41.4%), fore flippers (21.9%), and the neck (9.4%), and (iv) high densities of individuals are observed on restricted areas. We hypothesise that turtle's aggregation enhances horizontal transmission of the disease. FP could represent a risk for immature green turtles' survival in the French West Indies, a critical development area, which replenishes the entire Atlantic population. Continuing scientific monitoring is required to identify which factors are implicated in this panzootic disease and ensure the conservation of the green turtle at an international scale.


Asunto(s)
Tortugas , Animales , Martinica/epidemiología , Prevalencia
18.
Sci Total Environ ; 828: 154373, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278539

RESUMEN

Pollution of the marine environment by plastic marine debris has become one of the most pervasive threats impacting marine environments. In this study, for the first time, we evaluate the polymer types of the plastic marine debris ingested by 49 green and 14 loggerhead sea turtle strandings in the Gulf of Oman. Plastic marine debris was ingested by 73.5% of green and 42.9% of loggerhead sea turtles in this study. Overall, evidence suggested that green sea turtles from the Gulf of Oman coast of the United Arab Emirates ingested high levels of plastic marine debris, predominantly Polypropylene (PP) & Polyethylene (PE), followed by Nylon, PP-PE mixture, Polystyrene (PS), Poly vinyl chloride (PVC) and Ethylene vinyl acetate (EVA), respectively. Loggerhead sea turtles also ingested high levels of plastic marine debris, which also predominantly consisted of PP & PE, followed by PP-PE mixture, Nylon and PS. While recent studies were directed into polymer characterization of micro-plastics in aquatic life, our study focuses on macro-plastics which impose significantly greater risks.


Asunto(s)
Tortugas , Contaminantes del Agua , Animales , Ingestión de Alimentos , Nylons , Omán , Plásticos , Polietileno , Polímeros , Polipropilenos , Poliestirenos , Contaminantes del Agua/análisis
19.
J Exp Zool A Ecol Integr Physiol ; 337(5): 516-526, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35189044

RESUMEN

Development rate of ectothermic animals varies with temperature. Here we use data derived from laboratory constant temperature incubation experiments to formulate development rate models that can be used to model embryonic development rate in sea turtle nests. We then use a novel method for detecting the time of hatching to measure the in situ incubation period of sea turtle clutches to test the accuracy of our models in predicting the incubation period from nest temperature traces. We found that all our models overestimated the incubation period. We hypothesize three possible explanations which are not mutually exclusive for the mismatch between our modeling and empirically measured in situ incubation period: (1) a difference in the way the incubation period is calculated in laboratory data and in our field nests, (2) inaccuracies in the assumptions made by our models at high incubation temperatures where there is no empirical laboratory data, and (3) a tendency for development rate in laboratory experiments to be progressively slower as temperature decreases compared with in situ incubation.


Asunto(s)
Tortugas , Animales , Desarrollo Embrionario , Calor , Temperatura , Tortugas/fisiología
20.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 59: e181776, fev. 2022. mapas, ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1363185

RESUMEN

Fibropapillomatosis (FP) is an infectious disease caused by Chelonid alphaherpesvirus 5 (ChHV5). Nevertheless, its clinical manifestations are considered multifactorial. Due to its relevance, FP is currently monitored in sea turtle populations in the United States, Australia, Caribbean, and Brazil. Between 2000 and 2020, the TAMAR Project/ TAMAR Project Foundation analyzed the prevalence of FP in nine states and oceanic islands along the Brazilian coast, including Fernando de Noronha Archipelago (FNA), a historically FP-free area. A total of 4,435 green sea turtles (Chelonia mydas) were monitored from 2010 to 2016. Additionally, in 2012 and 2014, 43 FP-free skin samples were analyzed for ChHV5 using a qualitative PCR for the UL30 polymerase (pol) sequence. In 2015, a bilateral ocular nodule characterized as an FP tumor was reported in one of the monitored individuals undergoing rehabilitation. Tissue samples were collected following surgical removal of the tumor. Characterization of a 454 bp UL30 polymerase gene revealed a ChHV5 sequence previously reported in other areas of the Atlantic Brazilian coast. In the years following this finding from January 2017 to March 2020, a total of 360 C. mydas were monitored in the same area and no FP tumors were detected. This is the first report of FP and the first detection of ChHV5 in FNA, a finding of great concern considering this site's historical absence of FP occurrence. This study highlights the importance of monitoring this disease in historically FP-free areas of the Brazilian Atlantic coast.(AU)


A fibropapilomatose (FP) é uma doença infecciosa causada pelo Chelonid alphaherpesvirus 5 (ChHV5). No entanto, as manifestações clínicas da doença são consideradas multifatoriais. Esta doença é monitorada atualmente em populações de tartarugas marinhas nos EUA, Austrália, Caribe e Brasil. Desde 2000, o Projeto TAMAR/Fundação Projeto TAMAR analisa a presença de FP em nove estados da costa brasileira e ilhas oceânicas, incluindo o arquipélago de Fernando de Noronha, uma área historicamente livre de FP. Um total de 4.435 indivíduos de Chelonia mydas foram monitorados de 2010 a 2016 e 43 amostras de pele foram analisadas para detectar ChHV5 em 2012 e 2014 com o objetivo de avaliar a presença do vírus em tecidos sem FP, usando uma PCR qualitativa para detecção de sequências do gene da UL30 polimerase. Em 2015, uma tartaruga verde (C. mydas) foi relatada com um nódulo ocular bilateral caracterizado como FP. Amostras de tecido foram coletadas durante sua reabilitação e procedimento cirúrgico para remover o tumor. A caracterização parcial de uma sequência de 454 bp do gene UL30 polimerase detectou ChHV5 anteriormente relatado em outras áreas da costa atlântica brasileira. Após estes achados, de janeiro de 2017 a março de 2020, um total de 360 indivíduos de C. mydas foram monitorados e nenhum caso de FP foi registrado. Este é o primeiro relato de FP e a primeira caracterização de ChHV5 no arquipélago de Fernando de Noronha, uma questão preocupante e que ressalta a importância do monitoramento desta doença em áreas historicamente livres de FP na costa atlântica brasileira.(AU)


Asunto(s)
Animales , Papiloma/veterinaria , Neoplasias Cutáneas/veterinaria , Infecciones Tumorales por Virus/veterinaria , Tortugas , Infecciones por Herpesviridae/veterinaria , Herpesviridae , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA