Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(1991): 20221752, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695034

RESUMEN

Parasite spillback from domestic animals can distort the balance between host and parasites in surrounding wildlife, with potential detrimental effects on wild populations. In aquatic environments, parasite spillback from aquaculture to wild salmon is one of the most contentious sustainability debates. In a 19 year time series of release group studies of Atlantic salmon, we demonstrated that (i) the effect of subjecting out-migrating salmon smolts to parasite treatment on marine survival has been reduced over a time, (ii) the relation between salmon lice levels in the out-migration route of the salmon and effect of treatment against the parasite is weak, but also (iii) the return rates in both treated and untreated groups of salmon are negatively correlated with salmon lice levels, and (iv) returns of wild salmon to the region are similarly negatively correlated with salmon lice levels during the out-migration year. Our study suggests that salmon lice can have a large effect on wild salmon populations that is not revealed with randomized control trials using antiparasitic drugs. This should be better accounted for when considering the impacts of farms on wild salmon populations.


Asunto(s)
Copépodos , Enfermedades de los Peces , Parásitos , Salmo salar , Animales , Animales Salvajes , Acuicultura , Enfermedades de los Peces/parasitología
2.
J Fish Biol ; 102(3): 707-711, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562572

RESUMEN

This pilot study used programmed acoustic tags implanted into Salmo salar smolts, in conjunction with an extensive offshore marine receiver array, to investigate late-stage migratory behaviour and survival of returning adult salmon. A total of 100 smolts were tagged in 2020, and a number of individuals were successfully detected as returning adults in 2021. After detection efficiency was accounted for, 5-9 adults were estimated to have returned to the offshore array c. 45 km from the river mouth. A total of three fish were subsequently detected in the river. Losses of between 40% and 66% were evident during the final stages of ocean migration, and one tagged fish provided direct evidence of a predation event.


Asunto(s)
Salmo salar , Animales , Proyectos Piloto , Migración Animal , Ríos , Acústica
3.
J Fish Biol ; 101(1): 128-143, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35514226

RESUMEN

Long-term data, over four decades, were analysed to examine temporal trends in survival indices and phenotypic characteristics of Atlantic salmon Salmo salar returning to the Burrishoole national salmonid monitored river in Ireland. Before 2007, the marine drift net fishery was the major capture method for salmon in Irish home waters, accounting for over 70% of the commercial catch and targeting mixed stocks from multiple rivers. The authors examined size differences in fish captured in marine and freshwater environments and the impact of closure of this fishery on long-term survival indices and fish size. Return rates to Irish home waters for wild one sea-winter (1SW) and a ranching strain of hatchery-reared 1SW Atlantic salmon stocks showed a declining trend up to the time of closure of the fishery (1985-2006). In contrast, closure of the drift net fishery resulted in the anticipated increase in return rate to fresh water in the short term. Nonetheless, the short-term upward trend was not sustained in the following years: the trend for return rate to fresh water (1985-2017) was found to be neither increasing nor decreasing. Mean return rates to fresh water 10 years pre- and post-closure of the drift net fishery increased from 7.4% to 8.5% for wild 1SW and significantly from 2.4% to 3.7% for ranched 1SW suggesting some benefit had accrued as a consequence of drift net closure. For ranched 1SW salmon, entry into fresh water was found to be occurring earlier, which is likely a phenotypical response to changing climatic conditions. A declining trend in fish length was found in the pre-closure period, followed by a more stable trend post-closure. Similar patterns were observed for fish condition and weight parameters. Significantly, a step change in fish size occurred just before the closure of the Irish drift net fishery in both marine and freshwater habitats, when the average length decreased by 3.8 and 4.6 cm, respectively, between 2005 and 2006. This suggests an environmental effect on the population, rather than a fishery closure effect. Similar trends in fish length were observed in wild 1SW salmon kelts and ranched 2SW salmon in fresh water. The stable but not increasing trends post-closure suggest that conditions at sea may not be improving. These findings show that a clear decline occurred in wild and ranched salmon populations' return rates and lengths, while the drift net fishery was still active. Closure of the fishery did not result in a rebound to pre-exploitation levels of these indicators. Nonetheless, the trends went from declining to stable, suggesting the closure helped mitigate the impact of unfavourable environmental and rearing habitat conditions. These findings, based on four decades of data, highlight the urgency of strengthening monitoring of fisheries populations in face of climate change, so as to guide precautionary management measures that, as this study suggests, may be able to mitigate its impacts.


Asunto(s)
Explotaciones Pesqueras , Salmo salar , Migración Animal , Animales , Ríos , Estaciones del Año
4.
Glob Chang Biol ; 26(3): 1319-1337, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31701595

RESUMEN

A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock groups (CSG) in North America (NA) and Southern Europe (SE) over the period 1971-2014. We found strong coherence in the temporal variation in postsmolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor of 1.8 over the 1971-2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the postsmolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for populations from NA, 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for populations from SE, 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate-induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.


Asunto(s)
Cambio Climático , Salmo salar , Animales , Océano Atlántico , Teorema de Bayes , Europa (Continente) , América del Norte , Noruega
5.
Mol Ecol ; 27(23): 4698-4710, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30357988

RESUMEN

Local adaptation has been demonstrated in spatially or temporally distant animal populations but seldom in proximate populations. To address the scale of local adaptation in Pacific salmon (Oncorhynchus spp.), two generations of hybrids between temporally separated spawning segments were made in a population of pink salmon (O. gorbuscha) and compared with controls to evaluate the genetic architecture underlying adult migration time and to test for declines in marine survival that resulted from outbreeding depression. Bayesian mixed-effects models revealed that adult migration times in hybrid lines were intermediate to those of controls and that additive sources of genetic variation were significant, thereby indicating that local adaptation has acted on additive genetic variation in shaping this trait. Similarly, a line cross analysis revealed that an additive model best described the genetic architecture of adult migration time. In contrast, marine survival was generally similar between control and hybrid lines, which suggested that the effect of outbreeding upon marine survival was minimal at such a fine scale of genetic divergence. The implications of these results are that (a) local adaptation can facilitate genetic divergence of life history traits between proximate subpopulations; (b) artificial relaxation of natural barriers to gene flow can cause maladaptive shifts in life history traits; and (c) wild populations may harbour fine-scale adaptive variation that supports productivity and sustainability.


Asunto(s)
Adaptación Fisiológica/genética , Migración Animal , Genética de Población , Reproducción , Salmón/genética , Alaska , Animales , Teorema de Bayes , Femenino , Masculino , Modelos Genéticos
6.
J Fish Biol ; 93(3): 477-489, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29931783

RESUMEN

Adult return rates for wild Atlantic salmon Salmo salar smolts captured in a rotary screw trap and tagged with coded wire (CW) tags were compared with a control group, using detections from passive integrated transponder (PIT) antennae systems over 7 years in a small chalk stream in southern England, U.K. Compared with control smolts, capture and CW-tagging of experimental smolts affected detected return rates only under certain conditions, with a decreased return probability for smolts caught and tagged following mild winter river temperature anomalies and during the night. Similarly, analysis of the experimental smolts revealed that capture and CW-tagging following mild winters decreased their probability of return as adults. There were also marginal positive effects of length at PIT-tagging as parr and length at CW-tagging as smolts, on individual probability of return as adult. The results support the hypothesis that the effect of procedures involving the capture and tagging of migrating wild S. salar smolts will vary with the circumstances under which they are performed. The implications of the findings are considered in the context of ongoing investigations to derive and report marine return rates for S. salar in support of national and international stock assessments and in developing best practice.


Asunto(s)
Salmo salar , Telemetría/efectos adversos , Migración Animal , Animales , Inglaterra , Probabilidad , Ríos , Salmón , Estaciones del Año , Temperatura
7.
J Fish Biol ; 92(3): 569-578, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29537092

RESUMEN

Groups of wild-reared Atlantic salmon Salmo salar smolts were captured during their seaward migration on a tributary of the River Conon, Scotland, U.K., from 1999 to 2014 and tagged with passive integrated transponders (PIT). Fish that subsequently returned to the river after growing at sea were recorded automatically by a PIT-detector in a fish pass. Return rate was related directly to length and condition and inversely to day of the year that the smolt was tagged. Over years, as the study progressed, there was a significant increase in the proportion of smolts returning after two or more years at sea and no trend in returns of salmon having spent one winter at sea. There was no trend in the date of return of salmon across the study period. Fish that had spent more winters at sea returned earlier in the year.


Asunto(s)
Migración Animal , Salmo salar/fisiología , Animales , Tamaño Corporal , Ríos , Salmo salar/anatomía & histología , Escocia , Estaciones del Año , Factores de Tiempo
8.
J Fish Biol ; 89(3): 1624-40, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27339771

RESUMEN

The early migration and habitat use of brown trout Salmo trutta post-smolts tagged with acoustic transmitters (n = 50) were investigated in a fjord system in central Norway from 30 April to 26 November 2014. The main aims were to investigate return rate, marine residence time and spatial use of the fjord system. Median seaward migration and return to fresh water dates were 22 May and 4 July, respectively. Of the 40 seaward migrating smolts, 26 returned to fresh water, giving a minimum return rate to fresh water of 65%. Entrance to the fjord from the river occurred mainly at night (80% of the S. trutta), however, no such diurnal pattern was observed during the return migration. Mean marine residence time was 38 days, but with large individual variation (22-99 days). The innermost parts of the study area were more utilized than the outer part of the fjord system during the sea residency, and with more use of the near shore habitat than the open, pelagic areas. Many post-smolts also utilized the outer part of the fjord system, however, and 94% of the post-smolts were recorded at least 14 km from the home river mouth. Marine survival and distribution in the fjord were size dependent with the largest individuals utilizing outer fjord areas and having higher return rates to fresh water. As far as is known, this is the first published study on temporal and spatial behaviour in the marine environment of first-time S. trutta migrants during the full course of their first trip to sea.


Asunto(s)
Migración Animal , Ecosistema , Trucha , Acústica , Animales , Estuarios , Agua Dulce , Mar del Norte , Noruega , Ríos
9.
J Anim Ecol ; 83(5): 1035-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24673479

RESUMEN

Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability.


Asunto(s)
Migración Animal/fisiología , Ecosistema , Estadios del Ciclo de Vida/fisiología , Oncorhynchus mykiss/fisiología , Animales , Biomasa , Colombia Británica , Agua Dulce , Oncorhynchus mykiss/clasificación , Dinámica Poblacional , Reproducción/fisiología , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA