Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2318951121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39121160

RESUMEN

An increasingly common viewpoint is that protein dynamics datasets reside in a nonlinear subspace of low conformational energy. Ideal data analysis tools should therefore account for such nonlinear geometry. The Riemannian geometry setting can be suitable for a variety of reasons. First, it comes with a rich mathematical structure to account for a wide range of geometries that can be modeled after an energy landscape. Second, many standard data analysis tools developed for data in Euclidean space can be generalized to Riemannian manifolds. In the context of protein dynamics, a conceptual challenge comes from the lack of guidelines for constructing a smooth Riemannian structure based on an energy landscape. In addition, computational feasibility in computing geodesics and related mappings poses a major challenge. This work considers these challenges. The first part of the paper develops a local approximation technique for computing geodesics and related mappings on Riemannian manifolds in a computationally feasible manner. The second part constructs a smooth manifold and a Riemannian structure that is based on an energy landscape for protein conformations. The resulting Riemannian geometry is tested on several data analysis tasks relevant for protein dynamics data. In particular, the geodesics with given start- and end-points approximately recover corresponding molecular dynamics trajectories for proteins that undergo relatively ordered transitions with medium-sized deformations. The Riemannian protein geometry also gives physically realistic summary statistics and retrieves the underlying dimension even for large-sized deformations within seconds on a laptop.


Asunto(s)
Conformación Proteica , Proteínas , Proteínas/química , Algoritmos , Simulación de Dinámica Molecular
2.
Front Neuroimaging ; 1: 930496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555146

RESUMEN

The physical and clinical constraints surrounding diffusion-weighted imaging (DWI) often limit the spatial resolution of the produced images to voxels up to eight times larger than those of T1w images. The detailed information contained in accessible high-resolution T1w images could help in the synthesis of diffusion images with a greater level of detail. However, the non-Euclidean nature of diffusion imaging hinders current deep generative models from synthesizing physically plausible images. In this work, we propose the first Riemannian network architecture for the direct generation of diffusion tensors (DT) and diffusion orientation distribution functions (dODFs) from high-resolution T1w images. Our integration of the log-Euclidean Metric into a learning objective guarantees, unlike standard Euclidean networks, the mathematically-valid synthesis of diffusion. Furthermore, our approach improves the fractional anisotropy mean squared error (FA MSE) between the synthesized diffusion and the ground-truth by more than 23% and the cosine similarity between principal directions by almost 5% when compared to our baselines. We validate our generated diffusion by comparing the resulting tractograms to our expected real data. We observe similar fiber bundles with streamlines having <3% difference in length, <1% difference in volume, and a visually close shape. While our method is able to generate diffusion images from structural inputs in a high-resolution space within 15 s, we acknowledge and discuss the limits of diffusion inference solely relying on T1w images. Our results nonetheless suggest a relationship between the high-level geometry of the brain and its overall white matter architecture that remains to be explored.

3.
J Math Imaging Vis ; 61(6): 824-848, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396002

RESUMEN

We present an approach for variational regularization of inverse and imaging problems for recovering functions with values in a set of vectors. We introduce regularization functionals, which are derivative-free double integrals of such functions. These regularization functionals are motivated from double integrals, which approximate Sobolev semi-norms of intensity functions. These were introduced in Bourgain et al. (Another look at Sobolev spaces. In: Menaldi, Rofman, Sulem (eds) Optimal control and partial differential equations-innovations and applications: in honor of professor Alain Bensoussan's 60th anniversary, IOS Press, Amsterdam, pp 439-455, 2001). For the proposed regularization functionals, we prove existence of minimizers as well as a stability and convergence result for functions with values in a set of vectors.

4.
J Am Stat Assoc ; 105(490): 588-599, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-35386273

RESUMEN

Diffusion tensor imaging (DTI) data differ from most medical images in that values at each voxel are not scalars, but 3 × 3 symmetric positive definite matrices called diffusion tensors (DTs). The anatomic characteristics of the tissue at each voxel are reflected by the DT eigenvalues and eigenvectors. In this article we consider the problem of testing whether the means of two groups of DT images are equal at each voxel in terms of the DT's eigenvalues, eigenvectors, or both. Because eigendecompositions are highly nonlinear, existing likelihood ratio statistics (LRTs) for testing differences in eigenvalues or eigenvectors of means of Gaussian symmetric matrices assume an orthogonally invariant covariance structure between the matrix entries. While retaining the form of the LRTs, we derive new approximations to their true distributions when the covariance between the DT entries is arbitrary and possibly different between the two groups. The approximate distributions are those of similar LRT statistics computed on the tangent space to the parameter manifold at the true value of the parameter, but plugging in an estimate for the point of application of the tangent space. The resulting distributions, which are weighted sums of chi-squared distributions, are further approximated by scaled chi-squared distributions by matching the first two moments. For validity of the Gaussian model, the positive definite constraints on the DT are removed via a matrix log transformation, although this is not crucial asymptotically. Voxelwise application of the test statistics leads to a multiple-testing problem, which is solved by false discovery rate inference. The foregoing methods are illustrated in a DTI group comparison of boys versus girls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA