Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37433110

RESUMEN

Cullin-RING ubiquitin ligases (CRLs) are the largest class of ubiquitin ligases with diverse functions encompassing hundreds of cellular processes. Inactivation of core components of the CRL4 ubiquitin ligase produces a germ cell defect in Caenorhabditis elegans that is marked by abnormal globular morphology of the nucleolus and fewer germ cells. We identified DDB1 Cullin4 associated factor (DCAF)-1 as the CRL4 substrate receptor that ensures proper germ cell nucleolus morphology. We demonstrate that the dcaf-1 gene is the ncl-2 (abnormal nucleoli) gene, whose molecular identity was not previously known. We also observed that CRL4DCAF-1 is required for male tail development. Additionally, the inactivation of CRL4DCAF-1 results in a male-specific lethality in which a percentage of male progeny arrest as embryos or larvae. Analysis of the germ cell nucleolus defect using transmission electron microscopy revealed that dcaf-1 mutant germ cells possess significantly fewer ribosomes, suggesting a defect in ribosome biogenesis. We discovered that inactivation of the sperm-fate specification gene fog-1 (feminization of the germ line-1) or its protein-interacting partner, fog-3, rescues the dcaf-1 nucleolus morphology defect. Epitope-tagged versions of both FOG-1 and FOG-3 proteins are aberrantly present in adult dcaf-1(RNAi) animals, suggesting that DCAF-1 negatively regulates FOG-1 and FOG-3 expression. Murine CRL4DCAF-1 targets the degradation of the ribosome assembly factor periodic trptophan protein 1 (PWP1). We observed that the inactivation of Caenorhabditis elegansDCAF-1 increases the nucleolar levels of PWP1 in the germ line, intestine, and hypodermis. Reducing the level of PWP-1 rescues the dcaf-1 mutant defects of fewer germ cell numbers and abnormal nucleolus morphology, suggesting that the increase in PWP-1 levels contributes to the dcaf-1 germline defect. Our results suggest that CRL4DCAF-1 has an evolutionarily ancient role in regulating ribosome biogenesis including a conserved target in PWP1.


Asunto(s)
Caenorhabditis elegans , Proteínas Cullin , Masculino , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Ubiquitina/metabolismo , Semen/metabolismo , Células Germinativas/metabolismo , Factores de Transcripción/genética
2.
Dev Cell ; 49(4): 542-555.e9, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30956008

RESUMEN

Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Morfogénesis/genética , Morfogénesis/fisiología , Mutación , Fenotipo , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Factores de Transcripción/metabolismo
3.
Biochem Biophys Res Commun ; 482(4): 1213-1218, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27923661

RESUMEN

Cell division cycle 25 (Cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression by activating cyclin-dependent kinases (Cdks) which are inactivated by Wee1/Myt1 kinases. It was previously reported that cdc-25.2 promotes oocyte maturation and intestinal cell divisions in Caenorhabditis elegans hermaphrodites. Here, we report a novel function of cdc-25.2 in male tail development which was significantly deformed by cdc-25.2 RNAi depletion and in cdc-25.2 mutant males. The deformation was also observed after RNAi depletion of other cell cycle regulators, cdk-1, cyb-3, cyd-1, and cyl-1. Furthermore, wee-1.3 counteracted cdc-25.2 in male tail development as observed in oocyte maturation and intestine development. The number of cells in ray precursor cell lineages was significantly reduced in cdc-25.2 depleted males. These results indicate that CDC-25.2 is essential for cell divisions in ray precursor cell lineages for proper male tail development.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Regulación del Desarrollo de la Expresión Génica , Fosfoproteínas Fosfatasas/fisiología , Cola (estructura animal)/embriología , Animales , Animales Modificados Genéticamente , Ciclo Celular , División Celular , Linaje de la Célula , Quinasas Ciclina-Dependientes/metabolismo , Perfilación de la Expresión Génica , Masculino , Morfogénesis , Fenotipo , Interferencia de ARN , Transgenes
4.
J Nematol ; 32(3): 235-44, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19270972

RESUMEN

Evolution of diverse male tail epidermal features of representative species in the family Rhabditidae (Nematoda:Rhabditida) was mapped by parsimony on a molecular phylogeny inferred with nearly complete DNA sequences of small subunit ribosomal RNA genes. Although the molecular phylogeny is consistent with some previously proposed relationships, there are also some major differences, suggesting a revision of rhabditid taxonomy is required. To reconstruct male tail evolution, character states and homologies were determined with the aid of developmental profiling at the level of single cells. Because the model genetic system Caenorhabditis elegans is a member of Rhabditidae and allows the genetic and developmental mechanisms of morphogenesis to be elucidated, candidate genes and pathways can be proposed for several of the reconstructed evolutionary changes in male tail morphology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA