Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Seizure ; 113: 41-47, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976800

RESUMEN

PURPOSE: Study assessed the role of MSI in predicting the post-operative seizure outcome. METHODS: This retrospective study included patients who underwent MEG and epilepsy surgery and had a minimum 6 months of postoperative follow-up. Concordance of MEG cluster with post-surgical resection cavity was classified as follows Class I) Concordant and region-specific, Class II) Concordant and region non-specific, Class III) Concordant lateralization only and Class IV) Discordant lateralization. The relationship between MSI concordance and post-operative seizure outcome was assessed. RESULTS: A total of 183 patients (M: F = 109:74) were included. The mean age at onset of seizures: 8.0 ± 6.4 years. The dipoles were frequent in 123(67.2 %). The primary cluster orientation was regular in 59 (32.2 %) and mixed in 124 (67.8 %) patients. Concordance between MEG and resection cavity: Class I - 124 (67.8 %), class II- 30 (16.4 %), class III- 23 (12.6 %), and class IV- 6 (3.3 %). The post-surgically mean duration of follow-up was 19.52 ± 11.27 months. At 6-month follow-up period, 144 (78.7 %) patients had complete seizure freedom out of which 106 (73.6 %) had class I concordance. Concordance of MEG with resection cavity was associated with a good outcome at 6 months (p = 0.001), 1 year (p = 0.001), 2 years (p = 0.0005) and 5 years (p = 0.04). MEG cluster characteristics had no association with seizure outcome except the strength of the cluster and outcome at 3 years (p = 0.02) follow-up. CONCLUSION: The study supports that the complete resection of the MEG cluster had high chance of seizure-freedom and can be used as a complementary noninvasive presurgical evaluation tool.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Humanos , Lactante , Preescolar , Niño , Adolescente , Estudios Retrospectivos , Resultado del Tratamiento , Convulsiones/diagnóstico , Convulsiones/cirugía , Imagen por Resonancia Magnética
2.
Int J Neurosci ; : 1-13, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824719

RESUMEN

OBJECTIVES: This study aimed to localise the eloquent cortex and measure evoked field (EF) parameters using magnetoencephalography in patients with epilepsy and tumours near the eloquent cortex. METHODS: A total of 41 patients (26 with drug-refractory epilepsy and 15 with tumours), with a mean age of 33 years, were recruited. Visual evoked field (VEF), auditory evoked field (AEF), sensory evoked field (SSEF), and motor-evoked field (MEF) latencies, amplitudes, and localisation were compared with those of a control population. Subgroup analyses were performed based on lobar involvement. Evoked Field parameters on the affected side were compared with those on the opposite side. The effect of distance from the lesion on nearby and distant evoked fields was evaluated. RESULTS: AEF and VEF amplitudes and latencies were reduced bilaterally (p < 0.05). Amplitude in the ipsilateral SSEF was reduced by 29.27% and 2.16% in the AEF group compared to the contralateral side (p = 0.02). In patients with temporal lobe lesions, the SSEF amplitude was reduced bilaterally (p < 0.02), and latency was prolonged compared with controls. The MEF amplitude was reduced and latency was prolonged in patients with frontal lobe lesions (p = 0.01). EF displacement was 32%, 57%, 21%, and 16% for AEF, MEF, VEF, and SSEF respectively. Patients in the epilepsy group had distant EF abnormalities. CONCLUSIONS: EF amplitude was reduced and latency was prolonged in the involved hemisphere. Distant EF amplitudes were more affected than latencies in epilepsy. Amplitude and distance from the lesion had negative correlation for all EF. EF changes indicated eloquent cortical displacement which may not be apparent on MRI.

3.
Epilepsy Behav ; 143: 109221, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119580

RESUMEN

Since the discovery of the human electroencephalogram (EEG), neurophysiology techniques have become indispensable tools in our armamentarium to localize epileptic seizures. New signal analysis techniques and the prospects of artificial intelligence and big data will offer unprecedented opportunities to further advance the field in the near future, ultimately resulting in improved quality of life for many patients with drug-resistant epilepsy. This article summarizes selected presentations from Day 1 of the two-day symposium "Neurophysiology, Neuropsychology, Epilepsy, 2022: Hills We Have Climbed and the Hills Ahead". Day 1 was dedicated to highlighting and honoring the work of Dr. Jean Gotman, a pioneer in EEG, intracranial EEG, simultaneous EEG/ functional magnetic resonance imaging, and signal analysis of epilepsy. The program focused on two main research directions of Dr. Gotman, and was dedicated to "High-frequency oscillations, a new biomarker of epilepsy" and "Probing the epileptic focus from inside and outside". All talks were presented by colleagues and former trainees of Dr. Gotman. The extended summaries provide an overview of historical and current work in the neurophysiology of epilepsy with emphasis on novel EEG biomarkers of epilepsy and source imaging and concluded with an outlook on the future of epilepsy research, and what is needed to bring the field to the next level.


Asunto(s)
Inteligencia Artificial , Epilepsia , Humanos , Neuropsicología , Calidad de Vida , Mapeo Encefálico/métodos , Electroencefalografía/métodos
5.
Clin Neurophysiol ; 141: 126-138, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33875376

RESUMEN

OBJECTIVE: To assess the utility of interictal magnetic and electric source imaging (MSI and ESI) using dipole clustering in magnetic resonance imaging (MRI)-negative patients with drug resistant epilepsy (DRE). METHODS: We localized spikes in low-density (LD-EEG) and high-density (HD-EEG) electroencephalography as well as magnetoencephalography (MEG) recordings using dipoles from 11 pediatric patients. We computed each dipole's level of clustering and used it to discriminate between clustered and scattered dipoles. For each dipole, we computed the distance from seizure onset zone (SOZ) and irritative zone (IZ) defined by intracranial EEG. Finally, we assessed whether dipoles proximity to resection was predictive of outcome. RESULTS: LD-EEG had lower clusterness compared to HD-EEG and MEG (p < 0.05). For all modalities, clustered dipoles showed higher proximity to SOZ and IZ than scattered (p < 0.001). Resection percentage was higher in optimal vs. suboptimal outcome patients (p < 0.001); their proximity to resection was correlated to outcome (p < 0.001). No difference in resection percentage was seen for scattered dipoles between groups. CONCLUSION: MSI and ESI dipole clustering helps to localize the SOZ and IZ and facilitate the prognostic assessment of MRI-negative patients with DRE. SIGNIFICANCE: Assessing the MSI and ESI clustering allows recognizing epileptogenic areas whose removal is associated with optimal outcome.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Niño , Análisis por Conglomerados , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía/métodos , Convulsiones/cirugía
6.
Brain Topogr ; 35(1): 96-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34114168

RESUMEN

Magnetoencephalography (MEG) is a robust method for non-invasive functional brain mapping of sensory cortices due to its exceptional spatial and temporal resolution. The clinical standard for MEG source localization of functional landmarks from sensory evoked responses is the equivalent current dipole (ECD) localization algorithm, known to be sensitive to initialization, noise, and manual choice of the number of dipoles. Recently many automated and robust algorithms have been developed, including the Champagne algorithm, an empirical Bayesian algorithm, with powerful abilities for MEG source reconstruction and time course estimation (Wipf et al. 2010; Owen et al. 2012). Here, we evaluate automated Champagne performance in a clinical population of tumor patients where there was minimal failure in localizing sensory evoked responses using the clinical standard, ECD localization algorithm. MEG data of auditory evoked potentials and somatosensory evoked potentials from 21 brain tumor patients were analyzed using Champagne, and these results were compared with equivalent current dipole (ECD) fit. Across both somatosensory and auditory evoked field localization, we found there was a strong agreement between Champagne and ECD localizations in all cases. Given resolution of 8mm voxel size, peak source localizations from Champagne were below 10mm of ECD peak source localization. The Champagne algorithm provides a robust and automated alternative to manual ECD fits for clinical localization of sensory evoked potentials and can contribute to improved clinical MEG data processing workflows.


Asunto(s)
Mapeo Encefálico , Magnetoencefalografía , Algoritmos , Teorema de Bayes , Mapeo Encefálico/métodos , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Magnetoencefalografía/métodos
7.
Front Neurol ; 12: 722986, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721261

RESUMEN

Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.

8.
Seizure ; 89: 30-37, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33975080

RESUMEN

OBJECTIVE: One barrier hindering high frequency brain signals (HFBS, >80 Hz) from wide clinical applications is that the brain generates both pathological and physiological HFBS. This study was to find specific biomarkers for localizing epileptogenic zones (EZs). METHODS: Twenty three children with drug-resistant epilepsy and age/sex matched healthy controls were studied with magnetoencephalography (MEG). High frequency oscillations (HFOs, > 4 oscillatory waveforms) and high frequency spikes (HFSs, > 1 spiky or sharp waveforms) in 80-250 Hz and 250-600 Hz bands were blindly detected with an artificial intelligence method and validated with visual inspection. The magnitude of HFOs and HFSs were quantified with spectral analyses. Sources of HFSs and HFOs were localized and compared with clinical EZs determined by invasive recordings and surgical outcomes. RESULTS: HFOs in 80-250 Hz and 250-600 Hz were identified in both epilepsy patients (18/23, 12/23, respectively) and healthy controls (6/23, 4/23, respectively). HFSs in 80-250 Hz and 250-600 Hz were detected in patients (16/23, 11/23, respectively) but not in healthy controls. A combination of HFOs and HFSs localized EZs for 22 (22/23, 96%) patients. CONCLUSIONS: The results indicate, for the first time, that HFSs are a newer and more specific biomarker than HFOs for localizing EZs because HFOs appeared in both epilepsy patients and healthy controls while HFSs appeared only in epilepsy patients.


Asunto(s)
Inteligencia Artificial , Epilepsia Refractaria , Biomarcadores , Niño , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/cirugía , Electroencefalografía , Humanos , Magnetoencefalografía
9.
Seizure ; 88: 45-52, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33812307

RESUMEN

OBJECTIVE: To identify prognostic factors and long-term seizure outcomes for patients with tuberous sclerosis complex (TSC) who underwent resective treatment for epilepsy. METHODS: We enrolled 81 patients with TSC who had undergone resective epilepsy surgery at Sanbo Brain Hospital, Capital Medical University, between April 2004 and June 2019. We estimated cumulative probability of remaining seizure-free and plotted survival curves. Variables were compared using Mann-Whitney U, Pearson's correlation, continuity correction, and Fisher's exact chi-square tests. Prognostic predictors were analysed using log-rank (Mantel-Cox) tests and Cox regression models. RESULTS: At the last follow-up, 48 (59.3%) patients were classified as International League Against Epilepsy Class 1 (including 14 patients who had seizures <3 times postoperatively on the same or different day and were seizure-free at all other times). The estimated cumulative probability of remaining seizure-free postoperatively was 69.0% (95% confidence interval [CI] 58.8-79.2%), 61.9% (95% CI 51.1-72.7%), and 55.0% (95% CI 42.8-67.2%) at 2, 5, and 10 years, respectively. The mean time of remaining seizure-free was 7.24 ± 0.634 years (95% CI 6.00-8.49); en bloc resection was an essential positive predictor of postoperative seizure freedom, as was age at seizure onset, regional interictal video-electroencephalography pattern, and temporal lobe surgery. The longer the seizure-free time, the less likely a relapse. Patients who postoperatively experienced seizures remained likely to recover. CONCLUSIONS: We demonstrated the efficacy of surgical treatment for patients with TSC and intractable epilepsy. Detailed perioperative tests are a reliable predictor of postoperative seizure freedom.


Asunto(s)
Epilepsia , Esclerosis Tuberosa , Electroencefalografía , Epilepsia/cirugía , Humanos , Recurrencia Local de Neoplasia , Estudios Retrospectivos , Resultado del Tratamiento , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/cirugía
10.
Epilepsy Res ; 172: 106602, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713889

RESUMEN

BACKGROUND: Neuromagnetic high frequency brain signals (HFBS, > 80 Hz) are a new biomarker for localization of epileptogenic zones (EZs) for pediatric epilepsy. METHODS: Twenty three children with drug-resistant epilepsy and age/sex matched healthy controls were studied with magnetoencephalography (MEG). Epileptic HFBS in 80-250 Hz and 250-600 Hz were quantitatively determined by comparing with normative controls in terms of kurtosis and skewness. Magnetic sources of epileptic HFBS were localized and then compared to clinical EZs determined by invasive recordings and surgical outcomes. RESULTS: Kurtosis and skewness of HFBS were significantly elevated in epilepsy patients compared to healthy controls (p < 0,001 and p < 0.0001, respectively). Sources of elevated MEG signals in comparison to normative data were co-localized to EZs for 22 (22/23, 96 %) patients. CONCLUSIONS: The results indicate, for the first time, that epileptic HFBS can be noninvasively quantified by measuring kurtosis and skewness in MEG data. Magnetic source imaging based on kurtosis and skewness can accurately localize EZs. SIGNIFICANCE: Source imaging of kurtosis and skewness of MEG HFBS provides a novel way for preoperative localization of EZs for epilepsy surgery.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Niño , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Fenómenos Magnéticos , Imagen por Resonancia Magnética , Magnetoencefalografía
11.
Front Surg ; 7: 514247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195382

RESUMEN

Objective: The goal of this study was to systematically review functional mapping and reorganization that takes place in the setting of arteriovenous malformations (AVMs) and its potential impact on grading and surgical decision making. Methods: A systematic literature review was performed using the PubMed database for studies published between 1986 and 2019. Studies assessing brain mapping and functional reorganization in AVMs were included. Results: Of the total 84 articles identified in the original literature search, 12 studies were ultimately selected. This includes studies evaluating the impact of cortical reorganization on patient outcomes and factors impacting and triggering cortical reorganization in AVM. Conclusion: These studies demonstrate the utility of preoperative brain mapping and acknowledgment of functional reorganization in the setting of AVMs. While these findings led to alterations in Spetzler-Martin grading and subsequent surgical decision making, it remains unclear the clinical utility of this information when assessing patient outcomes. While promising, more research is required before recommendations can be made regarding functional brain mapping and cortical reorganization with respect to AVM surgery involving eloquent brain tissue.

12.
Clin Neurophysiol ; 131(12): 2915-2925, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32988727

RESUMEN

OBJECTIVE: Benign epileptiform transients of sleep (BETS) have a unique voltage topography and a posteriorly propagating, inferiorly rotating diphasic EEG pattern. The source generators of BETS have not been definitively identified. We aimed to clarify the cerebral localization of BETS using MEG and electromagnetic source imaging (EMSI). METHODS: We analyzed BETS recorded with simultaneous MEG and EEG in four patients with epilepsy. Magnetic source imaging (MSI) and EMSI using equivalent current, single moving and rotating dipole inverse models was performed on averaged BETS potentials. MEG beamforming was performed in one case with abundant BETS. RESULTS: MSI and EMSI revealed hippocampal dipole source maxima in all cases, with current flow direction rotating from inferomedial to superomedial or superolateral between the first and second BETS peaks. Moving dipole analyses revealed spatiotemporal propagation along the anterior-posterior hippocampal axis and concomitant electromagnetic field rotation. Beamformer source reconstruction revealed an identical hippocampal localization. CONCLUSIONS: Converging evidence from different electromagnetic inverse modeling methods indicates that BETS are traveling, rotating hippocampal spikes, whose diphasic waveform is due to back and forth propagation along the anterior-posterior axis of the hippocampus. SIGNIFICANCE: The hippocampal localization and longitudinal, rotating propagation pattern of BETS raises the possibility of a sleep-related functional role for these hippocampal spikes.


Asunto(s)
Potenciales de Acción/fisiología , Electroencefalografía/métodos , Epilepsia/fisiopatología , Hipocampo/fisiología , Magnetoencefalografía/métodos , Sueño/fisiología , Adulto , Epilepsia/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
13.
Brain Topogr ; 33(5): 651-663, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32770321

RESUMEN

The present work aims at validating a Bayesian multi-dipole modeling algorithm (SESAME) in the clinical scenario consisting of localizing the generators of single interictal epileptiform discharges from resting state magnetoencephalographic recordings. We use the results of Equivalent Current Dipole fitting, performed by an expert user, as a benchmark, and compare the results of SESAME with those of two widely used source localization methods, RAP-MUSIC and wMNE. In addition, we investigate the relation between post-surgical outcome and concordance of the surgical plan with the cerebral lobes singled out by the methods. Unlike dipole fitting, the tested algorithms do not rely on any subjective channel selection and thus contribute towards making source localization more unbiased and automatic. We show that the two dipolar methods, SESAME and RAP-MUSIC, generally agree with dipole fitting in terms of identified cerebral lobes and that the results of the former are closer to the fitted equivalent current dipoles than those of the latter. In addition, for all the tested methods and particularly for SESAME, concordance with surgical plan is a good predictor of seizure freedom while discordance is not a good predictor of poor post-surgical outcome. The results suggest that the dipolar methods, especially SESAME, represent a reliable and more objective alternative to manual dipole fitting for clinical applications in the field of epilepsy surgery.


Asunto(s)
Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Teorema de Bayes , Mapeo Encefálico , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Magnetoencefalografía
14.
Front Hum Neurosci ; 14: 264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742261

RESUMEN

Objective: This study aimed to investigate interictal neuromagnetic activities in the low- to high-frequency ranges in patients with benign epilepsy with centrotemporal spikes (BECTS), especially those without interictal epileptiform discharges (IEDs). Methods: We studied 21 clinically-diagnosed BECTS patients and 11 age-matched healthy controls (HC) using high-sampling magnetoencephalography (MEG). Neuromagnetic sources were assessed with accumulated source imaging (ASI). The MEG data were analyzed in seven frequency bands. The MEG recordings distinguished BECTS without IEDs (n = 10) from those with IEDs (n = 11) and HC (n = 11). Results: At 1-4 Hz, the neuromagnetic activities in healthy subjects tended to locate at the precuneus/posterior cingulate, while those of the BECTS patients without IEDs tended to locate at the medial frontal cortex (MFC) compared to BECTS patients with IEDs. The MEG source imaging at 30-80 Hz revealed that BECTS patients without IEDs had higher occurrences of interictal brain activity in the medial temporal lobe (MTL) compared to controls and the brain activity strength seemed to be weaker. There was a significant correlation between the source strength of the interictal gamma oscillations of BECTS patients without IEDs and the duration of epilepsy. Conclusions: IEDs might disrupt the default mode network (DMN). Aberrant brain activities in BECTS patients without IEDs were associated with cognitive areas of the brain. The strength of gamma oscillations in the chronic epilepsy state reflected the duration of BECTS. Significance: MEG could reveal the aberrant neural activities in BECTS patients during the interictal period, and such abnormality is frequency-dependent. Gamma oscillations could be used to identify BECTS patients without IEDs.

15.
Front Neurol ; 11: 479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582009

RESUMEN

Objective: Magnetoencephalography source imaging (MSI) of interictal epileptiform discharges (IED) is a useful presurgical tool in the evaluation of drug-resistant frontal lobe epilepsy (FLE) patients. Yet, failures in MSI can arise related to artifacts and to interference of background activity. Independent component analysis (ICA) is a popular denoising procedure but its clinical application remains challenging, as the selection of multiple independent components (IC) is controversial, operator dependent, and time consuming. We evaluated whether selecting only one IC of interest based on its similarity with the average IED field improves MSI in FLE. Methods: MSI was performed with the equivalent current dipole (ECD) technique and two distributed magnetic source imaging (dMSI) approaches: minimum norm estimate (MNE) and coherent Maximum Entropy on the Mean (cMEM). MSI accuracy was evaluated under three conditions: (1) ICA of continuous data (Cont_ICA), (2) ICA at the time of IED (IED_ICA), and (3) without ICA (No_ICA). Localization performance was quantitatively measured as actual distance of the source maximum in relation to the focus (Dmin), and spatial dispersion (SD) for dMSI. Results: After ICA, ECD Dmin did not change significantly (p > 0.200). For both dMSI techniques, ICA application worsened the source localization accuracy. We observed a worsening of both MNE Dmin (p < 0.05, consistently) and MNE SD (p < 0.001, consistently) for both ICA approaches. A similar behaviour was observed for cMEM, for which, however, Cont_ICA seemed less detrimental. Conclusion: We demonstrated that a simplified ICA approach selecting one IC of interest in combination with distributed magnetic source imaging can be detrimental. More complex approaches may provide better results but would be rather difficult to apply in real-world clinical setting. In a broader perspective, caution should be taken in applying ICA for source localization of interictal activity. To ensure optimal and useful results, effort should focus on acquiring good quality data, minimizing artifacts, and determining optimal candidacy for MEG, rather than counting on data cleaning techniques.

16.
Hum Brain Mapp ; 41(11): 3019-3033, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32386115

RESUMEN

Source localization of interictal epileptiform discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. We aimed to compare the performance of four different distributed magnetic source imaging (dMSI) approaches: Minimum norm estimate (MNE), dynamic statistical parametric mapping (dSPM), standardized low-resolution electromagnetic tomography (sLORETA), and coherent maximum entropy on the mean (cMEM). We also evaluated whether a simple average of maps obtained from multiple inverse solutions (Ave) can improve localization accuracy. We analyzed dMSI of 206 IEDs derived from magnetoencephalography recordings in 28 focal epilepsy patients who had a well-defined focus determined through intracranial EEG (iEEG), epileptogenic MRI lesions or surgical resection. dMSI accuracy and spatial properties were quantitatively estimated as: (a) distance from the epilepsy focus, (b) reproducibility, (c) spatial dispersion (SD), (d) map extension, and (e) effect of thresholding on map properties. Clinical performance was excellent for all methods (median distance from the focus MNE = 2.4 mm; sLORETA = 3.5 mm; cMEM = 3.5 mm; dSPM = 6.8 mm, Ave = 0 mm). Ave showed the lowest distance between the map maximum and epilepsy focus (Dmin lower than cMEM, MNE, and dSPM, p = .021, p = .008, p < .001, respectively). cMEM showed the best spatial features, with lowest SD outside the focus (SD lower than all other methods, p < .001 consistently) and high contrast between the generator and surrounding regions. The average map Ave provided the best localization accuracy, whereas cMEM exhibited the lowest amount of spurious distant activity. dMSI techniques have the potential to significantly improve identification of iEEG targets and to guide surgical planning, especially when multiple methods are combined.


Asunto(s)
Corteza Cerebral/fisiopatología , Electroencefalografía/métodos , Epilepsias Parciales/diagnóstico , Epilepsias Parciales/fisiopatología , Magnetoencefalografía/métodos , Adolescente , Adulto , Mapeo Encefálico , Electrocorticografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
17.
J Neurosurg ; 134(3): 1037-1043, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413858

RESUMEN

OBJECTIVE: Preoperative localization of seizure onset zones (SOZs) is an evolving field in the treatment of refractory epilepsy. Both magnetic source imaging (MSI), and the more recent EEG-correlated functional MRI (EEG-fMRI), have shown applicability in assisting surgical planning. The purpose of this study was to evaluate the capability of each method and their combination in localizing the seizure onset lobe (SL). METHODS: The study included 14 patients who underwent both MSI and EEG-fMRI before undergoing implantation of intracranial EEG (icEEG) as part of the presurgical planning of the resection of an epileptogenic zone (EZ) during the years 2012-2018. The estimated location of the SL by each method was compared with the location determined by icEEG. Identification rates of the SL were compared between the different methods. RESULTS: MSI and EEG-fMRI showed similar identification rates of SL locations in relation to icEEG results (88% ± 31% and 73% ± 42%, respectively; p = 0.281). The additive use of the coverage lobes of both methods correctly identified 100% of the SL, significantly higher than EEG-fMRI alone (p = 0.039) and nonsignificantly higher than MSI (p = 0.180). False-identification rates of the additive coverage lobes were significantly higher than MSI (p = 0.026) and EEG-fMRI (p = 0.027). The intersecting lobes of both methods showed the lowest false identification rate (13% ± 6%, p = 0.01). CONCLUSIONS: Both MSI and EEG-fMRI can assist in the presurgical evaluation of patients with refractory epilepsy. The additive use of both tests confers a high identification rate in finding the SL. This combination can help in focusing implantation of icEEG electrodes targeting the SOZ.


Asunto(s)
Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Procedimientos Neuroquirúrgicos/métodos , Convulsiones/diagnóstico por imagen , Convulsiones/cirugía , Adolescente , Adulto , Niño , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocorticografía , Electrodos Implantados , Reacciones Falso Positivas , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Imagen Multimodal , Resultado del Tratamiento , Adulto Joven
18.
Neurosurg Focus ; 48(4): E16, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32234989

RESUMEN

OBJECTIVE: For patients with nonlesional refractory focal epilepsy (NLRFE), localization of the epileptogenic zone may be more arduous than for other types of epilepsy and frequently requires information from multiple noninvasive presurgical modalities and intracranial EEG (icEEG). In this prospective, blinded study, the authors assessed the clinical added value of magnetic source imaging (MSI) in the presurgical evaluation of patients with NLRFE. METHODS: This study prospectively included 57 consecutive patients with NLRFE who were considered for epilepsy surgery. All patients underwent noninvasive presurgical evaluation and then MSI. To determine the surgical plan, discussion of the results of the presurgical evaluation was first undertaken while discussion participants were blinded to the MSI results. MSI results were then presented. MSI influence on the initial management plan was assessed. RESULTS: MSI results influenced patient management in 32 patients. MSI results led to the following changes in surgical strategy in 14 patients (25%): allowing direct surgery in 6 patients through facilitating the detection of subtle cortical dysplasia in 4 patients and providing additional concordant diagnostic information to other presurgical workup in another 2 patients; rejection of surgery in 3 patients originally deemed surgical candidates; change of plan from direct surgery to icEEG in 2 patients; and allowing icEEG in 3 patients deemed not surgical candidates. MSI results led to changed electrode locations and contact numbers in another 18 patients. Epilepsy surgery was performed in 26 patients influenced by MSI results and good surgical outcome was achieved in 21 patients. CONCLUSIONS: This prospective, blinded study showed that information provided by MSI allows more informed icEEG planning and surgical outcome in a significant percentage of patients with NLRFE and should be included in the presurgical workup in those patients.


Asunto(s)
Epilepsia Refractaria/cirugía , Epilepsias Parciales/cirugía , Epilepsia/cirugía , Procedimientos Neuroquirúrgicos , Adolescente , Adulto , Niño , Electroencefalografía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos/métodos , Adulto Joven
19.
Neurosurg Focus ; 48(4): E13, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32234993

RESUMEN

OBJECTIVE: The goal of this study was to evaluate the predictive value and relative contribution of noninvasive presurgical functional imaging modalities based on the authors' institutional experience in pursuing seizure-free surgical outcomes in children with medically refractory epilepsy. METHODS: This was a retrospective, single-institution, observational cohort study of pediatric patients who underwent evaluation and surgical treatment for medically refractory partial epilepsy between December 2003 and June 2016. During this interval, 108 children with medically refractory partial epilepsy underwent evaluation for localization and resective epilepsy surgery. Different noninvasive functional imaging modalities, including ictal SPECT, FDG-PET, and magnetoencephalography-magnetic source imaging, were utilized to augment a standardized paradigm (electroencephalography/semiology, MRI, and neuropsychology findings) for localization. Outcomes were evaluated at a minimum of 2 years (mean 7.5 years) utilizing area under the receiver operating characteristic curve analysis. Localizing modalities and other clinical covariates were examined in relation to long-term surgical outcomes. RESULTS: There was variation in the contribution of each test, and no single presurgical workup modality could singularly and reliably predict a seizure-free outcome. However, concordance of presurgical modalities yielded a high predictive value. No difference in long-term outcomes between inconclusive (normal or diffusely abnormal) and abnormal focal MRI results were found. Long-term survival analyses revealed a statistically significant association between seizure freedom and patients with focal ictal EEG, early surgical intervention, and no history of generalized convulsions. CONCLUSIONS: Comprehensive preoperative evaluation utilizing multiple noninvasive functional imaging modalities is not redundant and can improve pediatric epilepsy surgical outcomes.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Procedimientos Neuroquirúrgicos , Convulsiones/diagnóstico por imagen , Convulsiones/cirugía , Adolescente , Adulto , Preescolar , Estudios de Cohortes , Electroencefalografía/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Procedimientos Neuroquirúrgicos/métodos , Estudios Retrospectivos
20.
Neuroimaging Clin N Am ; 30(2): 145-158, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32336403

RESUMEN

Magnetoencephalography is the noninvasive measurement of miniscule magnetic fields produced by brain electrical currents, and is used most fruitfully to evaluate epilepsy patients. While other modalities infer brain function indirectly by measuring changes in blood flow, metabolism, and oxygenation, magnetoencephalography measures neuronal and synaptic function directly with submillisecond temporal resolution. The brain's magnetic field is recorded by neuromagnetometers surrounding the head in a helmet-shaped sensor array. Because magnetic signals are not distorted by anatomy, magnetoencephalography allows for a more accurate measurement and localization of brain activities than electroencephalography. Magnetoencephalography has become an indispensable part of the armamentarium at epilepsy centers.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Magnetoencefalografía , Mapeo Encefálico , Electroencefalografía , Humanos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA