Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2401440121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875145

RESUMEN

At fast-spreading centers, faults develop within the axial summit trough (AST; 0 to 250 m around the axis) primarily by diking-induced deformation originating from the axial magma lens (AML). The formation of the prominent abyssal-hill-bounding faults beyond the axial high (>2,000 m) is typically associated with the unbending of the lithosphere as it cools and spreads away from the AST. The presence of faults is rarely mapped between these two thermally distinct zones, where the lithosphere is still too hot for the faults to be linked with the process of thermal cooling and outside of the AST where the accretional diking process dominates the ridge axis. Here, we reveal a remarkable vertical alignment between the distinct morphological features of the magma body and the orientation of these faults, by comparison of 3-D seismic imagery and bathymetry data collected at the East Pacific Rise (EPR) 9°50'N. The spatial coincidence and asymmetric nucleation mode of the mapped faults represent the most direct evidence for magmatically induced faulting near the ridge axis, providing pathways for hydrothermalism and magma emplacement, helping to build the crust outside of the AST. The high-resolution seafloor and subsurface images also enable revised tectonic strain estimates, which shows that the near-axis tectonic component of seafloor spreading at the EPR is an order of magnitude smaller than previously thought with close to negligible contribution of lava buried faults to spreading.

2.
Proc Natl Acad Sci U S A ; 121(12): e2317809121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466842

RESUMEN

Magmatism in the Quaternary Clear Lake volcanic field (CLVF), with its youngest eruption having only occurred c. 10 ka ago, is commonly invoked as the heat source for the world's largest commercial geothermal reservoir, The Geysers, in northern California. A shallow silicic magma reservoir in the upper-middle crust has been discovered for some time, but the location and mechanism of a potential deep mafic magma reservoir have remained elusive. Here, we present a seismic tomographic model that images the entire crustal column, clearly revealing a multilevel transcrustal magmatic system beneath the Geysers-Clear Lake area. Upwelling melts from the mantle traverse across the crust-mantle boundary and accumulate in the lower crust underneath the southeastern part of Clear Lake, resulting in a hot Moho in between. Mafic melts primarily ascend westward due to the extensional regime in the west and physical barrier effect from the overlying rigid ophiolite fragment, ultimately forming a shallow silicic magma reservoir underlying and heating The Geysers geothermal field. In addition, this study also links compositionally diverse volcanism in a continental setting to differentiation in a multilevel transcrustal magmatic system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA