Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124888, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116589

RESUMEN

An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages. Among the problems it is necessary to mention complicated sample preparation, difficult interpretation of experimental data requiring qualified and experienced personnel, different behavior of fluorescently labeled IONP comparing to those label-free or finally the lack of possibility of chemical composition characteristics of nanomaterials. The purpose of the present investigation was the assessment of the usefulness of Raman microscopy for the tracking of the internalization of IONP into cells, as well as the optimization of this process. Moreover, the study focused on identification of the potential differences in the cellular fate of superparamagnetic nanoparticles having magnetite and maghemite core. The Raman spectra of U87MG cells which internalized IONP presented additional bands which position depended on the used laser wavelength. They occurred at the wavenumber range 1700-2400 cm-1 for laser 488 nm and below the wavenumber of 800 cm-1 in case of laser 532 nm. The intensity of the mentioned Raman bands was higher for the green laser (532 nm) and their position, was independent and not characteristic on the primary core material of IONP (magnetite, maghemite). The obtained results showed that Raman microscopy is an excellent, non-destructive and objective technique that allows monitoring the process of internalization of IONP into cells and visualizing such nanoparticles and/or their metabolism products within them at low exposure levels. What is more, the process of tracking IONP using the technique may be further improved by using appropriate wavelength and power of the laser source.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Línea Celular Tumoral , Microscopía/métodos , Compuestos Férricos/química , Compuestos Férricos/análisis , Compuestos Férricos/metabolismo
2.
Small ; : e2402717, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148218

RESUMEN

Investigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50 nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8 nm displayed a propensity for forming single-crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single-crystal and polycrystalline maghemite nanowires through solid-phase transformation. These significant findings provide new insights into the size-dependent structural evolution and phase transformation of iron oxides at the nanoscale.

3.
R Soc Open Sci ; 11(6): 231839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100165

RESUMEN

Nanoparticle uptake by cells is a key parameter in their performance in biomedical applications. However, the use of quantitative, non-destructive techniques to obtain the amount of nanoparticles internalized by cells is still uncommon. We have studied the cellular uptake and the toxicity of core-shell maghemite-silica magnetic nanoparticles (MNPs), with a core diameter of 9 nm and a shell thickness of 3 nm. The internalization of the nanoparticles by mouse neuroblastoma 2a cells was evaluated by sensitive and non-destructive Superconducting Quantum Interference Device (SQUID) magnetometry and corroborated by graphite furnace atomic absorption spectroscopy. We were thus able to study the toxicity of the nanoparticles for well-quantified MNP uptake in terms of nanoparticle density within the cell. No significant variation in cell viability or growth rate was detected for any tested exposure. Yet, an increase in both the amount of mitochondrial superoxide and in the lysosomal activity was detected for the highest concentration (100 µg ml-1) and incubation time (24 h), suggesting the onset of a disruption in ROS homeostasis, which may lead to an impairment in antioxidant responses. Our results validate SQUID magnetometry as a sensitive technique to quantify MNP uptake and demonstrate the non-toxic nature of these core-shell MNPs under our culture conditions.

4.
Medicina (Kaunas) ; 60(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399496

RESUMEN

Background and Objectives: Nowadays, the development of enabled pharmaceutical nanoparticles of solid lipid type is continuously growing, because they have the potential to be used for targeted drug release leading to an increased effect of chemotherapy, being used in lung cancer nano-diagnosis and nano-therapy. The current study reports the preliminary results obtained regarding the biological effect of a new nano-enabled pharmaceutical formulation in terms of its cytotoxic and biosafety profile. Materials and Methods: The pharmaceutical formulations consist of solid lipid nanoparticles (SLN) obtained via the emulsification-diffusion method by loading green iron oxide nanoparticles (green-IONPs) with a pentacyclic triterpene (oleanolic acid-OA). Further, a complex biological assessment was performed, employing three-dimensional (3D) bronchial microtissues (EpiAirwayTM) to determine the biosafety profile of the SLN samples. The cytotoxic potential of the samples was evaluated on human lung carcinoma, using an in vitro model (A549 human lung carcinoma monolayer). Results: The data revealed that the A549 cell line was strongly affected after treatment with SLN samples, especially those that contained OA-loaded green-IONPs obtained with Ocimum basilicum extract (under 30% viability rates). The biosafety profile investigation of the 3D normal in vitro bronchial model showed that all the SLN samples negatively affected the viability of the bronchial microtissues (below 50%). As regards the morphological changes, all the samples induce major changes such as loss of the surface epithelium integrity, loss of epithelial junctions, loss of cilia, hyperkeratosis, and cell death caused by apoptosis. Conclusions: In summary, the culprit for the negative impact on viability and morphology of 3D normal bronchial microtissues could be the too-high dose (500 µg/mL) of the SLN sample used. Nevertheless, further adjustments in the SLN synthesis process and another complex in vitro evaluation will be considered for future research.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias Pulmonares , Nanopartículas , Humanos , Composición de Medicamentos/métodos , Neoplasias Pulmonares/patología , Antineoplásicos/uso terapéutico , Pulmón/patología , Portadores de Fármacos/uso terapéutico , Tamaño de la Partícula
5.
Environ Pollut ; 346: 123557, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38355082

RESUMEN

Photo-catalyzing sulfite (S(IV)) for the generation of sulfate radical (SO4•-) has emerged as a novel advanced oxidation process (AOP) recently. However, both the potential of soil minerals as effective photocatalysts and the process of water acidification due to S(IV) oxidation have been overlooked. Herein, maghemite (γ-Fe2O3), a typical soil iron oxide with excellent photocatalytic reactivity like hematite and magnetic-collectible property like magnetite, was successfully used to activate S(IV) for iohexol degradation under visible light irradiation. As a result, 91.3% of iohexol was eliminated within 15 min at 0.1 g/L maghemite and 0.5 mM S(IV) under neutral conditions. The influencing factors, including initial pH, catalyst dosage, S(IV) amount, co-existing substances and water matrix, were systematically investigated. The maghemite/S(IV)/vis system exhibited superior performance in iohexol degradation at a wide pH range (3-10). It was found that the released proton via S(IV) oxidation led to severe water acidification. Interestingly, a low dose of HCO3- could evidently resist water acidification with little influence on iohexol elimination. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that SO4•-, •OH and •O2- were involved in iohexol abatement with SO4•- being the dominant reactive species. Compared with hydrogen peroxide, persulfate and peroxymonosulfate, the established maghemite/S(IV)/vis system achieved much more remarkable degradation performance. Furthermore, the reactivity of the catalyst was not obviously reduced even after 10 runs of reaction. This study expands the application of soil iron oxide mineral in S(IV) activation in water treatment and proposes an approach to regulate water acidification in S(IV)-based AOP.


Asunto(s)
Compuestos Férricos , Yohexol , Contaminantes Químicos del Agua , Yohexol/química , Minerales , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Sulfitos/química , Suelo , Contaminantes Químicos del Agua/análisis
6.
Chemosphere ; 350: 141103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184083

RESUMEN

This work reports the ion exchange fabrication of maghemite (γ-Fe2O3) modified NaY zeolite (Fe2O3@Y) with bifunction of adsorption and catalysis. The Fe3+ successfully replaced the Na+ in the ß cage of zeolite in the ion exchange process and coordinated with framework oxygens to form magnetic γ-Fe2O3. Therefore, most of the γ-Fe2O3 particles were confined in the ß cages, which resulted in the high dispersal and stability of the catalyst. The Fe2O3@Y could remove methylene blue (MB) model pollutants up to 59.02 and 61.47% through the adsorption and catalysis process, respectively. The hydrogen bond between the OH- ions around the Fe2O3@Y surface and the N and O presented in the MB molecules enabled the chemical adsorption to MB, which accorded with the pseudo-second-order kinetic model. Further, the H+ existed in the solution and the ß cage of zeolite promoted the collapse of micro-nano bubbles (MNBs). Then, the γ-Fe2O3 catalyst would be activated by high temperature and oxidated OH- to produce hydroxyl radicals for pollutant degradation. Thus, pollutant removal was attributed to the combined effects of adsorption and catalysis in the Fe2O3@Y + MNB system. In this work, the Fe2O3@Y was demonstrated as a potentially magnetic adsorbent or MNB catalyst for wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Zeolitas , Compuestos Férricos , Catálisis , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
7.
Environ Sci Pollut Res Int ; 31(2): 2297-2313, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062214

RESUMEN

In this study, we developed a novel nanocomposite-based membrane using maghemite copper oxide (MC) to enhance the separation efficiency of poly(vinyl chloride) (PVC) membranes for oil-in-water emulsions. The MC nanocomposite was synthesized using a co-precipitation method and incorporated into a PVC matrix by casting. The resulting nanocomposite-based membrane demonstrated a high degree of crystallinity and well-dispersed nanostructure, as confirmed by TEM, SEM, XRD, and FT-IR analyses. The performance of the membrane was evaluated in terms of water flux, solute rejection, and anti-fouling properties. The pinnacle of performance was unequivocally reached with a solution dosage of 50 mL, a solution concentration of 100 mg L-1, and a pump pressure of 2 bar, ensuring that every facet of the membrane's potential was fully harnessed. The new fabricated membrane exhibited superior efficiency for oil-water separation, with a rejection rate of 98% and an ultra-high flux of 0.102 L/m2 h compared to pure PVC membranes with about 90% rejection rate and an ultra-high flux of 0.085 L/m2 h. Furthermore, meticulous contact angle measurements revealed that the PMC nanocomposite membrane exhibited markedly lower contact angles (65° with water, 50° with ethanol, and 25° with hexane) compared to PVC membranes. This substantial reduction, transitioning from 85 to 65° with water, 65 to 50° with ethanol, and 45 to 25° with hexane for pure PVC membranes, underscores the profound enhancement in hydrophilicity attributed to the heightened nanoparticle content. Importantly, the rejection efficiency remained stable over five cycles, indicating excellent anti-fouling and cycling stability. The results highlight the potential of the maghemite copper oxide nanocomposite-based PVC membrane as a promising material for effective oil-in-water emulsion separation. This development opens up new possibilities for more flexible, durable, and anti-fouling membranes, making them ideal candidates for potential applications in separation technology. The presented findings provide valuable information for the advancement of membrane technology and its utilization in various industries, addressing the pressing challenge of oil-induced water pollution and promoting environmental sustainability.


Asunto(s)
Incrustaciones Biológicas , Compuestos Férricos , Nanocompuestos , Cobre , Hexanos , Emulsiones/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química , Agua/química , Etanol , Membranas Artificiales
8.
Artículo en Inglés | MEDLINE | ID: mdl-37964143

RESUMEN

A magnetic hydrogel based on xylan (X), poly (acrylic acid), and maghemite (γ-Fe2O3) named HXA-Fe2O3 was synthesized, characterized, and applied as an alternative material to remove methylene blue (MB) from aqueous media by adsorption. Maghemite was synthesized by coprecipitation method and later incorporated in the hydrogel matrix synthesized by free radical polymerization. The characterization studies included FTIR, DSC, XRD, VSM, Zeta Potential, TGA, SEM, TEM, and N2 adsorption isotherms (BET). The physicochemical characterization results confirmed the intended synthesis and showed the compositional, thermal, structural, morphological, textural, and magnetic profile of the materials. The adsorption studies included experimental design, kinetic, and isotherm. A full factorial design was employed considering the factors adsorbent dosage (g L-1), pH, and ionic strength (mmol L-1 of NaCl) for adsorption capacity and removal percentage responses. As ionic strength was not significant, a Doehlert design was employed with adsorbent dosage and pH, indicating the optimal adsorption conditions. The kinetics was well described by the PSO model, while the isotherm obeyed the Sips model. Equilibrium was attained at 60 min, and the maximum experimental adsorption capacity was up to 250.26 mg g-1 at pH 8.5, adsorbent dosage of 0.2 g L-1, and 298 K. These findings show that the magnetic hydrogel produced has great potential to be applied in the adsorption of basic molecules, such as MB.

9.
Chemosphere ; 342: 140132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690560

RESUMEN

In this work, complete elimination of Escherichia coli and Salmonella typhimurium was achieved in 120 min using a heterogeneous photo-Fenton process under sunlight at pH 6.5 in distilled water. A face-centered composite central design 22 with one categoric factor and three replicates at the central point was used to evaluate the effect of iron (III) oxide concentration (0.8-3.4 mg L-1), H2O2 (2-10 mg L-1), and the type of iron oxide phase (maghemite and hematite) on the inactivation of both bacteria. The results showed that the amount of catalyst, H2O2 concentration and their interaction were significant factors (p < 0.05) in the elimination of the microorganisms. Thus, under the best conditions (3.4 mg L-1 of iron (III) oxide and 10 mg L-1 of H2O2) in the experimental ranges, complete inactivation of E. coli and S. typhimurium was achieved (6-log reduction) in 120 min using the photo-Fenton treatment with both iron-oxide phases. Furthermore, the photocatalytic elimination of both bacteria by the photo-Fenton process using hematite and maghemite in secondary-treated wastewater effluent was performed obtaining slower inactivation rates (1.2-5.9 times) than in distilled water due to the matrix effect of the effluent from a wastewater treatment plant. Nevertheless, the process continued to be effective in the effluent, achieving complete bacterial elimination in 150 min using the hematite phase. Additionally, the SEM images of the bacterial cells showed that the heterogeneous photo-Fenton treatment generated permanent and irreversible cell damage, resulting in complete cell death.


Asunto(s)
Escherichia coli , Purificación del Agua , Luz Solar , Aguas Residuales , Salmonella typhimurium , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/química , Desinfección/métodos , Hierro/farmacología , Hierro/química , Purificación del Agua/métodos , Agua/farmacología , Oxidación-Reducción
10.
Acta Crystallogr A Found Adv ; 79(Pt 5): 412-426, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37490406

RESUMEN

The local structural characterization of iron oxide nanoparticles is explored using a total scattering analysis method known as pair distribution function (PDF) (also known as reduced density function) analysis. The PDF profiles are derived from background-corrected powder electron diffraction patterns (the e-PDF technique). Due to the strong Coulombic interaction between the electron beam and the sample, electron diffraction generally leads to multiple scattering, causing redistribution of intensities towards higher scattering angles and an increased background in the diffraction profile. In addition to this, the electron-specimen interaction gives rise to an undesirable inelastic scattering signal that contributes primarily to the background. The present work demonstrates the efficacy of a pre-treatment of the underlying complex background function, which is a combination of both incoherent multiple and inelastic scatterings that cannot be identical for different electron beam energies. Therefore, two different background subtraction approaches are proposed for the electron diffraction patterns acquired at 80 kV and 300 kV beam energies. From the least-square refinement (small-box modelling), both approaches are found to be very promising, leading to a successful implementation of the e-PDF technique to study the local structure of the considered nanomaterial.

11.
Pharmaceutics ; 15(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514168

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-Fe2O3) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA-co-HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA-co-HAO). Additionally, P(HPMA-co-HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.

12.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373219

RESUMEN

In the present work, superparamagnetic adsorbents based on 3-aminopropyltrimethoxy silane (APTMS)-coated maghemite (γFe2O3@SiO2-NH2) and cobalt ferrite (CoFe2O4@SiO2-NH2) nanoparticles were prepared and characterized using transmission-electron microscopy (TEM/HRTEM/EDXS), Fourier-transform infrared spectroscopy (FTIR), specific surface-area measurements (BET), zeta potential (ζ) measurements, thermogravimetric analysis (TGA), and magnetometry (VSM). The adsorption of Dy3+, Tb3+, and Hg2+ ions onto adsorbent surfaces in model salt solutions was tested. The adsorption was evaluated in terms of adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%) based on the results of inductively coupled plasma optical emission spectrometry (ICP-OES). Both adsorbents, γFe2O3@SiO2-NH2 and CoFe2O4@SiO2-NH2, showed high adsorption efficiency toward Dy3+, Tb3+, and Hg2+ ions, ranging from 83% to 98%, while the adsorption capacity reached the following values of Dy3+, Tb3+, and Hg2+, in descending order: Tb (4.7 mg/g) > Dy (4.0 mg/g) > Hg (2.1 mg/g) for γFe2O3@SiO2-NH2; and Tb (6.2 mg/g) > Dy (4.7 mg/g) > Hg (1.2 mg/g) for CoFe2O4@SiO2-NH2. The results of the desorption with 100% of the desorbed Dy3+, Tb3+, and Hg2+ ions in an acidic medium indicated the reusability of both adsorbents. A cytotoxicity assessment of the adsorbents on human-skeletal-muscle derived cells (SKMDCs), human fibroblasts, murine macrophage cells (RAW264.7), and human-umbilical-vein endothelial cells (HUVECs) was conducted. The survival, mortality, and hatching percentages of zebrafish embryos were monitored. All the nanoparticles showed no toxicity in the zebrafish embryos until 96 hpf, even at a high concentration of 500 mg/L.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Pez Cebra , Dióxido de Silicio/química , Células Endoteliales , Mercurio/química , Iones , Nanopartículas Magnéticas de Óxido de Hierro , Adsorción , Cinética , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
13.
Nanomaterials (Basel) ; 13(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37242100

RESUMEN

Real water remediation is an important issue that requires the development of novel adsorbents with remarkable adsorption properties, permitting reusability. In this work, the surface and adsorption properties of bare magnetic iron oxide nanoparticles were systematically studied, before and after the application of a maghemite nanoadsorbent in two real Peruvian effluents severely contaminated with Pb(II), Pb(IV), Fe(III), and others. We were able to describe the Fe and Pb adsorption mechanisms that occurred at the particle surface. 57Fe Mössbauer and X-ray photoelectron spectroscopy results together with kinetic adsorption analyses gave evidence for two involved surface mechanisms: (i) surface deprotonation of maghemite nanoparticles (isoelectric point of pH = 2.3), forming Lewis sites bonding Pb complexes; and (ii) the formation of a thin inhomogeneous secondary layer of iron oxyhydroxide and adsorbed Pb compounds, as favored by surface physicochemical conditions. The magnetic nanoadsorbent enhanced the removal efficiency to values of ca. 96% and provided adsorptive properties with reusability due to the conserved morphological, structural, and magnetic properties. This makes it favorable for large-scale industrial applications.

14.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903665

RESUMEN

Iron oxide nanoparticles with a mean size of approximately 5 nm were synthesized by irradiating micro-emulsions containing iron salts with energetic electrons. The properties of the nanoparticles were investigated using scanning electron microscopy, high-resolution transmission electron microscopy, selective area diffraction and vibrating sample magnetometry. It was found that formation of superparamagnetic nanoparticles begins at a dose of 50 kGy, though these particles show low crystallinity, and a higher portion is amorphous. With increasing doses, an increasing crystallinity and yield could be observed, which is reflected in an increasing saturation magnetization. The blocking temperature and effective anisotropy constant were determined via zero-field cooling and field cooling measurements. The particles tend to form clusters with a size of 34 nm to 73 nm. Magnetite/maghemite nanoparticles could be identified via selective area electron diffraction patterns. Additionally, goethite nanowires could be observed.

15.
Electromagn Biol Med ; 42(1): 21-40, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36857381

RESUMEN

Magnetic nanoparticle (MNP) mediated microwave ablation has the great potential at present to address challenges associated with treatment planning such as maximum heat generation in the vicinity of targeted tissues in lesser penetration time. Further, the antenna applicators injected in human phantom must be rigid and thin. The derivative-free optimization algorithms are carried out for optimum design of monopole, slot, dipole, and tapered slot antenna applicators for ablation of tumour tissues invasively. It is found that in terms of input impedance matching, the used multi-criterion Nelder-Mead optimization performs efficiently for tapered slot applicator achieving S11 value of -40 dB with much reduced antenna dimensions. In order to further escalate the performance of tapered slot antenna, gold (Au)-coated iron-based MNPs are suggested for tumor infusion. Spherical gold-coated shell material is preferrable for more sphericity of ablation zone, biocompatibility and due to high conductivity, heat generated in MNPs can be transferred to biological tissues more rapidly. The size, type, and shape of MNPs also influence the heat generation in tumor tissues. Thus, three different types of MNPs having high magnetization properties, Au@Fe3O4, Au@α-Fe2O3 and Au@γ-Fe2O3 have been employed to study the performance in terms of maximum rise in temperature, specific absorption rate (SAR), and area of ablation zone by varying core size radius of MNPs. Results demonstrate that increase in radius of MNP core helps in increasing the temperature distribution and reduction in ablation zone. The optimized lesion is achieved for 20 nm core radius of Au@Fe3O4.


Asunto(s)
Hipertermia Inducida , Ablación por Radiofrecuencia , Humanos , Microondas/uso terapéutico , Calor , Oro
16.
Nanotechnology ; 34(19)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36825776

RESUMEN

Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.

17.
Small ; 19(16): e2207035, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36683216

RESUMEN

The rapid development in micro-machinery enabled the investigation of smart materials that can embody fast response, programmable actuation, and flexibility to perform mechanical work. Soft magnetic actuators represent an interesting platform toward combining those properties. This study focuses on the synthesis of micro-actuators that respond to thermal and magnetic stimuli using micro-molding with a soft template as a fabrication technique. These microsystems consist of a hydrogel matrix loaded with anisotropic magnetic nanospindles. When a homogeneous magnetic field is applied, the nanospindles initially dispersed in monomer solution, align and assemble into dipolar chains. The ensuing UV-polymerization creates a network and conveniently arrests these nanostructures. Consequently, the magnetic dipole moment is coplanar with the microgel. Varying the shape, volume, and composition of the micro-actuators during synthesis provides a temperature-dependent control over the magnetic response and the polarizability. Beyond isotropic swelling, shaping the hydrogel as long thin ribbons with a passive layer on one side allows for differential swelling leading to bending and twisting deformations, for example, 2D- or 3D-spiral. These deformations involve a reversible amplification of the magnetic response and orientation of the hydrogels under magnetic field. Temperature control herewith determines the conformation and simultaneously the magnetic response of the micro-actuators.

18.
Beilstein J Nanotechnol ; 14: 11-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36703905

RESUMEN

Different iron oxides (i.e., magnetite, maghemite, goethite, wüstite), particularly nanosized particles, show distinct effects on living organisms. Thus, it is of primary importance for their biomedical applications that the morphology and phase-structural state of these materials are investigated. The aim of this work was to obtain magnetic nanoparticles in a single reactor using Fe(III) acetylacetonate as the initial precursor for the synthesis of Fe(III) oleate or Fe(III) undecylate followed by their thermolysis in situ. We proposed a new approach, according to which the essential magnetite precursor (a complex salt of higher acids - Fe(III) alkanoates) is obtained in a solvent with a high boiling point via displacement reaction of acetylacetone with a higher acid from Fe(III) acetylacetonate during its elimination from the reaction mixture under vacuum conditions. Magnetic nanoparticles (NPM) were characterized in terms of morphology, hydrodynamic diameter, and composition via several techniques, such as transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy/attenuated total reflectance, 57Fe Mössbauer spectroscopy, and X-ray diffraction. The effect of unsaturated oleic (OA) and undecylenic (UA) acids, which are both used as a reagent and as a nanoparticle stabilizer, as well as the influence of their ratio to Fe(III) acetylacetonate on the properties of particles were investigated. Stable dispersions of NPM were obtained in 1-octadecene within the OA or UA ratio from 3.3 mol to 1 mol of acetylacetonate and up to 5.5 mol/mol. Below the mentioned limit, NPM dispersions were colloidally unstable, and at higher ratios no NPM were formed which could be precipitated by an applied magnetic field. Monodisperse nanoparticles of iron oxides were synthesized with a diameter of 8-13 nm and 11-16 nm using OA and UA, respectively. The organic shell that enables the particle to be dispersed in organic media, in the case of oleic acid, covers their inorganic core only with a layer similar to the monomolecular layer, whereas the undecylenic acid forms a thicker layer, which is 65% of the particle mass. The result is a significantly different resistance to oxidation of the nanoparticle inorganic cores. The core of the particles synthesized using oleic acid is composed of more than 90% of maghemite. When undecylenic acid is used for the synthesis, the core is composed of 75% of magnetite.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122207, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502763

RESUMEN

This work describes biologically important nanostructures of metals (AgNPs, AuNPs, and PtNPs) and metal oxides (Cu2ONPs, CuONSs, γ-Fe2O3NPs, ZnONPs, ZnONPs-GS, anatase-TiO2NPs, and rutile-TiO2NPs) synthesized by different methods (wet-chemical, electrochemical, and green-chemistry methods). The nanostructures were characterized by molecular spectroscopic methods, including scanning/transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Raman scattering spectroscopy (RS), and infrared light spectroscopy (IR). Then, a peptide (bombesin, BN) was adsorbed onto the surface of these nanostructures from an aqueous solution with pH of 7 that did not contain surfactants. Adsorption was monitored using surface-enhanced Raman scattering spectroscopy (SERS) to determine the influence of the nature of the metal surface and surface evolution on peptide geometry. Information from the SERS studies was compared with information on the biological activity of the peptide. The SERS enhancement factor was determined for each of the metallic surfaces.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Óxidos , Agua
20.
Environ Monit Assess ; 195(1): 244, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576613

RESUMEN

Soil petroleum hydrocarbon contamination in the wetlands could cause ecological risk, especially through leakage into water reservoirs. So, the detection of the spatial variability of total petroleum hydrocarbons (TPH) in these soils is very crucial. The variability of TPH and its associations with magnetic susceptibility (χlf) in contaminated soils around the Shadegan pond in southern Iran was investigated. TPH varied from 2.1 to 18.1% (w/w), by the variation of χlf from 14.08 to 713.93 × 10-8 m3 kg-1. The highest variability (coefficient of variation, CV = 107.12%) was obtained for χlf indicating significant impacts of magnetic minerals induced by crude oil contamination. High positive correlations were detected among TPH, χlf, and different forms of iron (Fed: extracted by CBD, Feo: extracted by oxalate, and Fet: total iron). The results of mineralogy by powdery XRD and scanning electron microscopy (SEM), also revealed the formation of ferrimagnetic minerals (magnetite, maghemite) during the biodegradation of petroleum hydrocarbons. The stepwise multiple regression analysis showed that χlf and Fed made a great contribution and could explain about 74% of TPH variability in the studied sites. For the extension of this cost-effective and rapid technique, further work is needed to assay saturation isothermal remnant magnetization and isothermal remanet magnetization in contaminated sites.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Petróleo/análisis , Humedales , Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Biodegradación Ambiental , Fenómenos Magnéticos , Suelo , Hierro/análisis , Contaminantes del Suelo/análisis , Microbiología del Suelo , Contaminación por Petróleo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA