Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274597

RESUMEN

Due to its exceptional mechanical and chemical properties at high temperatures, Inconel 718 is extensively utilized in industries such as aerospace, aviation, and marine. Investigating the flow behavior of Inconel 718 under high strain rates and high temperatures is vital for comprehending the dynamic characteristics of the material in manufacturing processes. This paper introduces a physics-based constitutive model that accounts for dislocation motion and its density evolution, capable of simulating the plastic behavior of Inconel 718 during large strain deformations caused by machining processes. Utilizing a microstructure-based flow stress model, the machinability of Inconel 718 in terms of cutting forces and temperatures is quantitatively predicted and compared with results from orthogonal cutting experiments. The model's predictive precision, with a margin of error between 5 and 8%, ensures reliable consistency and enhances our comprehension of the high-speed machining dynamics of Inconel 718 components.

2.
Materials (Basel) ; 17(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124407

RESUMEN

The Ti-5Al-5V-5Mo-3Cr (Ti-5553) alloy is a relatively novel difficult-to-cut material with limited machinability and tool life analysis available in the literature, and hence requires further investigation. This study focuses on the machining and tribological performance of Ti-5553 under high-speed finish turning (150 m/min, 175 m/min, and 200 m/min) via novel mono/bi-layered PVD-coated WC tools. A base AlTiN coating is used as the reference monolayer coating, with AlCrN, diamond-like ta-C, and TiAlSiN coatings each deposited on top of a base AlTiN coating, totaling four separate coated tools (one monolayer and three bi-layer). Tool life, cutting forces, workpiece surface quality, and tribological chip analysis are among the subjects of investigation in this study. Overall, the AlTiN/AlCrN coated tool outperformed all the other combinations: an improvement of ~19% in terms of tool life in reference to the base AlTiN coating when averaging across the three speeds; lowest surface roughness values: ~0.30, 0.33, and 0.64 µm; as well as the lowest chip back surface roughness values: ~0.80, 0.68, and 0.81 µm at 150, 175, and 200 m/min, respectively. These results indicate that the AlTiN/AlCrN coating is an excellent candidate for industrial applications involving high-speed machining of Ti-5553.

3.
Micromachines (Basel) ; 15(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38258226

RESUMEN

SiCp/Al composite materials are widely used in various industries such as the aerospace and the electronics industries, primarily due to their excellent material properties. However, their machinability is significantly weakened due to their unique characteristics. Consequently, efficient and precise machining technology for SiCp/Al composite materials has become a crucial research area. By conducting a comprehensive analysis of the relevant research literature from both domestic and international sources, this study examines the processing mechanism, as well as the turning, milling, drilling, grinding, special machining, and hybrid machining characteristics, of SiCp/Al composite materials. Moreover, it summarizes the latest research progress in composite material processing while identifying the existing problems and shortcomings in this area. The aim of this review is to enhance the machinability of SiCp/Al composite materials and promote high-quality and efficient processing methods.

4.
Materials (Basel) ; 16(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005085

RESUMEN

In the current study, Ti-6Al-4V (Ti64) and Ti-6Al-7Nb (Ti67) alloys were prepared by vacuum arc melting. The produced samples were then subjected to different heat treatment regimes. The evolved microstructures and their corresponding hardness were investigated. Computerized drilling tests using TiAlN-coated high-speed steel bits were performed to assess the machinability of the prepared specimen regarding cutting force, tool wear, and thickness of the deformed layer. It was observed that Ti64 specimens that were water quenched from either α/ß or ß range contained martensitic phase. In Ti67, samples showed martensite only when water quenched from the ß-phase range (1070 °C). Formation of martensite resulted in higher hardness and hence led to higher cutting forces and increased tool wear during the drilling process. Machined samples with higher hardness formed a thicker subsurface deformation area (white layer) and increased burr heights. Surface roughness in Ti64 workpieces was generally higher compared to Ti67 specimens. The coat of the drilling bit was partially attacked in the as-cast specimens, which was evident by elemental N on the machining chips. The machining tool deteriorated further by increasing the workpiece hardness through martensitic formation, where elements such as Cr, V, Fe, etc. that came from the tool steel were detected.

5.
Polymers (Basel) ; 15(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37835931

RESUMEN

Ultrahigh-molecular-weight polyethylene (UHMWPE) is used in the defence industry mainly owing to its properties, such as excellent dimensional stability, excellent ballistic performance, and light weight. Although UHMWPE laminates are generally studied under impact loads, it is crucial to understand better the optimal machining conditions for assembling auxiliary structures in combat helmets or armour. This work analyses the machinability of UHMWPE laminates by drilling. The workpiece material has been manufactured through hot-pressing technology and subjected to drilling tests. High-speed steel (HSS) twist drills with two different point angles and a brad and spur drill that is 6 mm in diameter have been used for this study. Cutting forces, failure, and main damage modes are analysed, making it possible to extract relevant information for the industry. The main conclusion is that the drill with a smaller point angle has a better cutting force performance and less delamination at the exit zone (5.4 mm at a 60 m/min cutting speed and a 0.05 mm/rev feed) in the samples. This value represents a 46% improvement over the best result obtained in terms of delamination at the exit when using the tool with the larger point angle. However, the brad and spur drill revealed a post-drilling appearance with high fuzzing and delamination.

6.
Heliyon ; 9(8): e18807, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560707

RESUMEN

The aluminium alloy (AA1100) was familiar with automotive flexible shaft coupling applications due to its high strength, good machinability, and superior thermal and resistance to corrosion characteristics. Machining tool life drives the prominent role for deciding the product quality (machining) act aims to productivity target with zero interruptions. The novelty of this present investigation is the focus on increasing tool life during the complexity of CNC turning operation for AA1100 alloy by using CBN coated insert tool with varied input parameters of spindle speed (SS), feed rate (f), and depth of cut (DOC). Design of experiment (L16), analysis of variance (ANOVA) statistical system adopted with response surface methodology (RSM) is implemented for experimental analysis. The turning input parameters of SS, f and DOC are considered as factors and its SS (900, 1100, 1300, and 1500 rpm), f (0.1, 0.15, 0.2, and 0.25), and DOC (0.1, 0.2, 0.3, and 0.4 mm) values are treated as levels. The investigational analysis was made with the ANOVA technique and the desirability of high tool life with input turning parameters was optimized by RSM, and sample no 11/16 was predicted as high tool life and performed with extended working hours compared to other samples. The RSM optimized best turning parameter combinations are 0.1 mm DOC, 0.2mm/rev to 0.25mm/rev f, and 1300 rpm-1500 rpm SS, facilitating a higher tool life of more than 20min.

7.
Materials (Basel) ; 16(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37445131

RESUMEN

In this paper, the authors present a comparative analysis of the thermomechanical properties of plastics intended for machining before and after the annealing process. The research included the dynamic properties, thermal analysis and a study of the surface after machining. The dynamic properties were tested using the DMTA method. The characteristics of changes in the value of the storage modulus E' and the tangent of the mechanical loss angle tgδ depending on the temperature and vibration frequency were determined. The thermal properties were tested using the DSC method, and a comparative analysis of the roughness parameters of the tested materials obtained from the profilometer was carried out. The presented studies indicate the extent of the impact of the annealing process on the machinability of structural polymer materials, taking into account the analysis of changes in the thermomechanical properties of the tested materials.

8.
Heliyon ; 9(7): e17671, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456035

RESUMEN

An effective cooling mode with appropriate process parameters can enhance the machinability as well as productivity. In this regard, this study focuses on evaluating the machinability of widely used Ti-6Al-4V alloy with the use of high-pressure coolant jets compared to dry milling. A novel rotary applicator was designed and developed to feed high-pressure coolant jets without any drastic change of solid end mill cutter. Four flutes solid HSS end mill cutter was selected for machining because of its some intensive properties. Biodegradable VG-68 cutting oil was chosen as cutting fluid due to its better thermo-physical properties with higher flash points. Machinability was assessed at 16-32 m/min cutting speeds and feed rates of 0.08-0.16 mm/tooth with a constant depth of cut of 1.0 mm, taking into account the average cutting temperature, resultant cutting force, mean surface roughness, and tool wear. Dry milling produced the worst results for all of the investigated responses, with excessive tool wear due to the lack of cooling and lubrication. Compared to dry milling, high-pressure cooling (HPC) lowered average cutting temperature, resultant cutting force, and mean surface roughness by 11.21-21.57%, 8.63-13.12%, and 6.09-29.6%, respectively, whereas rotary high-pressure cooling (RHPC) reduced these parameters by 15.39-27.27%, 14.05-21.18%, 16.48-41.04%. RHPC's efficient cooling and lubrication increased the machinability of the Ti-6Al-4V alloy. Dry milling showed severe flank wear with increased built-up edge (BUE) development, abrasion, and adhesion, whereas HPC and RHPC dramatically reduced the severity of tool wear. In HPC and RHPC, the tool life was consequently increased by 6.8 and 9 min, respectively.

9.
Micromachines (Basel) ; 14(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37374732

RESUMEN

This paper presents a research investigation conducted on the turning of stainless steel 316 material under a dry environment using microwave-treated cutting tool inserts. Plain tungsten carbide WC tool inserts were exposed to microwave treatment for enhancement of their performance characteristics. It was found that a 20-min microwave treatment resulted in the best tool hardness and metallurgical characteristics. These tool inserts have been used to machine SS 316 material following the Taguchi L9 design of experimental techniques. A total of eighteen experiments have been conducted by varying three main machining parameters, i.e., cutting speed, feed rate, and depth of cut, at three levels per parameter. It has been found that tool flank wear increased with all three parameters and surface roughness decreased. At the longest dept of cut, surface roughness increased. An abrasion wear mechanism was found on the tool flank face at a high machining speed and adhesion at low speed. Chips with a helical shape and low serrations have been investigated. Turning SS 316 at optimum machining parameters of 170 m/min cutting speed, 0.2 mm/rev feed rate, and 1 mm depth of cut, as obtained by the multiperformance optimization technique grey relational analysis, resulted in the best values of all machinability indicators: 242.21 µm tool flank wear, 3.81 µm mean roughness depth, and 34,000 mm3/min material removal rate, at a single parameter setting. In terms of research achievements, the percentage reduction in surface roughness is approximately 30% and represents an almost ten-fold improvement in the material removal rate. The combination of machining parameters of 70 m/min cutting speed, 0.1 mm/rev feed rate, and 0.5 mm depth of cut is optimum for the lowest value of tool flank wear when considered for single parameter optimization.

10.
Polymers (Basel) ; 15(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37242879

RESUMEN

The paper investigates the influence of some 3D printing conditions on some physical-mechanical and technological properties of polycaprolactone (PCL) wood-based biopolymer parts manufactured by FDM. Parts with 100% infill and the geometry according to ISO 527 Type 1B were printed on a semiprofessional desktop FDM printer. A full factorial design with three independent variables at three levels was considered. Some physical-mechanical properties (weight error, fracture temperature, ultimate tensile strength) and technological properties (top and lateral surface roughness, cutting machinability) were experimentally assessed. For the surface texture analysis, a white light interferometer was used. Regression equations for some of the investigated parameters were obtained and analysed. Higher printing speeds than those usually reported in the existing literature dealing with wood-based polymers' 3D printing had been tested. Overall, the highest level chosen for the printing speed positively influenced the surface roughness and the ultimate tensile strength of the 3D-printed parts. The cutting machinability of the printed parts was investigated by means of cutting force criteria. The results showed that the PCL wood-based polymer analysed in this study had lower machinability than natural wood.

11.
Materials (Basel) ; 16(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903171

RESUMEN

Wire and arc additive manufacturing (WAAM) technology has recently become attractive due to the fact of its high production capacity and flexible deposition strategy. One of the most prominent drawbacks of WAAM is surface irregularity. Therefore, WAAMed parts cannot be used as built; they require secondary machining operations. However, performing such operations is challenging due to the fact of high waviness. Selecting an appropriate cutting strategy is also challenging, because surface irregularity makes cutting forces unstable. The present research determines the most suitable machining strategy by assessing the specific cutting energy and local machined volume. Up- and down-milling are evaluated by calculating the removed volume and specific cutting energy for creep-resistant steel, stainless steel, and their combination. It is shown that the main factors that affect the machinability of WAAMed parts are the machined volume and specific cutting energy rather than the axial and radial depths of the cut due to the fact of high surface irregularity. Even though the results were unstable, a surface roughness of 0.1 µm was obtained with up-milling. Despite a two-fold difference in the hardness between the two materials in the multi-material deposition, it is found that hardness should not be used as a criterion for as-built surface processing. In addition, the results show no machinability difference between multi- and single-material components for a low machined volume and low surface irregularity.

12.
J Texture Stud ; 54(2): 222-236, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790799

RESUMEN

Undesired dough adhesion is still a challenge during the production of baked goods. There are various methods for determining the adhesive texture properties of dough. In the majority of scientific papers, dough stickiness is measured analytically by the force-distance recording of dough detachment. In this study, we describe a new multi-scale approach to compare dough adhesion phenomena in a laboratory, pilot sale and human sensory assessment. In it, the adhesive material properties of dough were investigated using a pilot scale toppling device representing dough adhesion behavior in the production process, in the laboratory by texture analysis with the Chen-Hoseney method and furthermore with a new, implemented non-oral human sensory analysis. To simulate different dough adhesion behavior, the dough mechanical and adhesion properties were varied by applying dough-modifying enzymes and different dough storage times. The structural changes in the different wheat dough system were compared by rheological characterization. By characterizing the different adhesion phenomena of the doughs, the sample with bacterial xylanase showed the highest values after 80 min of storage time in all three methods. Correlation analysis revealed a strong relationship between the detachment time (pilot scale) and human sensory assessment attributes (Force R = 0.81, Time R = 0.87, Distance R = 0.92, Stickiness R = 0.80) after 80 min of storage time. Even though human sensory assessment showed limits in the detectability of differences in dough adhesion behavior compared to the Chen-Hoseney method, it was better suited to predict machinability.


Asunto(s)
Alimentos , Fenómenos Mecánicos
13.
Dent Mater J ; 42(2): 273-281, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36696986

RESUMEN

The aims of this study were to estimate the machinability and machining accuracy of polymer-based CAM blocks using the merlon fracture test model specified in ISO 18675: 2022. Three hybrid disc blanks (MazicDuro, HC Disk, and Enamic) and three polymethyl methacrylate (PMMA) disc blanks (PMMA Disk, PMMA Block, and MazicTemp Hybrid) were tested in this study. The machinability was evaluated by assigning scores according to the fracture range of merlons with areas divided by ten vertical planes. The machining accuracy was evaluated by superimposing methods via CAD reference data and CAD specimen data. Within the limits of this study, a thickness of 0.3 mm is recommended for the clinical application of polymer-based CAD/CAM blocks in dental restorations that require superior machinability and accuracy. In addition, the machinability and machining accuracy tests of polymer-based CAM blocks are expected to provide guidelines for preparing accurate dental restorations.


Asunto(s)
Polímeros , Polimetil Metacrilato , Ensayo de Materiales , Cerámica , Diseño Asistido por Computadora , Propiedades de Superficie
14.
Adv Sci (Weinh) ; 10(6): e2206395, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36581501

RESUMEN

Thermoelectric refrigeration is one of the mature techniques used for cooling applications, with the great advantage of miniaturization over traditional compression refrigeration. Due to the anisotropic thermoelectric properties of n-type bismuth telluride (Bi2 Te3 ) alloys, these two common methods, including the liquid phase hot deformation (LPHD) and traditional hot forging (HF) methods, are of considerable importance for texture engineering to enhance performance. However, their effects on thermoelectric and mechanical properties are still controversial and not clear yet. Moreover, there has been little documentation of mechanical properties related to micro-refrigeration applications. In this work, the above-mentioned methods are separately employed to control the macroscopic grain orientation for bulk n-type Bi2 Te3 samples. The HF method enabled the stabilization of both composition and carrier concentration, therefore yielding a higher quality factor to compare with that of LPHD samples, supported by DFT calculations. In addition to superior thermoelectric performance, the HF sample also exhibited robust mechanical properties due to the presence of nano-scale distortion and dense dislocation, which is the prerequisite for realizing ultra-precision machining. This work helps to pave the way for the utilization of n-type Bi2 Te3 for commercial micro-refrigeration applications.

15.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38231924

RESUMEN

Machining high-strength structural steels often requires challenging processes. It is essential to improve the machinability of such materials, which are frequently needed in industrial manufacturing areas. Recently, it has become necessary to enhance the machinability of such materials using different nanopowders. In this study, different cooling/lubricating (C/L) liquids were prepared with cellulose nanocrystal (CNC) nanopowder. The aim was to improve the machinability properties of Dillimax 690T material with the prepared CNC-based cutting fluids. CNC nanopowders were added to 0.5% distilled water by volume, and a new nanofluid was produced. Unlike previous studies, base synthetic oil and CNC-based cutting fluid were sprayed on the cutting area with a double minimum quantity lubrication (MQL) system. Machinability tests were carried out by milling. Two different cutting speeds (Vc = 120-150 m/min), two different feed rates (f = 0.05-0.075 mm/tooth), and four different C/L environments (dry, MQL oil, CNC nanofluid, MQL oil + CNC nanofluid) were used in the experiments. In the study, where a total of 16 experiments were performed, cutting temperature (Tc), surface roughness (Ra), tool wear (Vb), and energy consumption results were analyzed in detail. According to the test results, significant improvements were achieved in the machinability properties of the material in the experiments carried out using CNC nanofluid. In particular, the hybrid C/L environment using MQL oil + CNC nanofluid improved all machinability metrics by over 15% compared to dry machining. In short, using CNC nanopowders offers a good milling process of Dillimax 690T material with effective lubrication and cooling ability.

16.
Dent Mater ; 38(12): e308-e317, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36435637

RESUMEN

OBJECTIVES: To evaluate the fracture toughness and brittleness of a newly developed CAD/CAM resin composite block and compare it with five other resin composite blocks and one polymer-infiltrated ceramic block. METHODS: Fracture toughness was determined through single-edge notched beam (SENB) method according to ASTM D5045-14. Parallelepiped specimens (thickness × width × length = 1.8 × 3.6 × âˆ¼18 mm) with a V notch (length = âˆ¼1.8 mm) (n = 10) were made from block materials using a low-speed water-cooled diamond precision saw and razor blade. Brittleness index (BI) was calculated from Vickers hardness and fracture toughness. Data were analyzed using one-way ANOVA and post-hoc Tukey tests (p ≤ 0.05). RESULTS: The experimental block showed significantly higher fracture toughness than all commercial block materials (p < 0.001) and has a brittleness index similar to most commercial blocks (p > 0.05) which have significantly lower brittleness index than Vita Enamic (p < 0.001). A moderate or strong correlation was observed between fracture toughness and flexural strength (Pearson's correlation coefficient R = 0.66) or diametral tensile strength (R = 0.86) or filler loading (R = 0.66), and between brittleness and Vickers hardness (R = 0.87). SIGNIFICANCE: The new composite block exhibited significantly higher fracture toughness and lower brittleness among the commercial CAD/CAM composite block materials tested, indicating a lower tendency to fracture and marginal chipping, and better machinability. The new composite block with higher fracture toughness and lower brittleness is suitable to use in the fabrication of CAD/CAM indirect restorations with potential long-term clinical success.


Asunto(s)
Resinas Compuestas , Diseño Asistido por Computadora , Resistencia Flexional , Dureza , Resistencia a la Tracción
17.
J Mech Behav Biomed Mater ; 132: 105296, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35653915

RESUMEN

This study focused on the role of lithium metasilicate crystalline phase and microstructural evolution on altering the mechanical properties and machinability of two glass-ceramic system, (Li2O-K2O-Na2O-CaO-MgO-ZrO2-Al2O3-P2O5-SiO2), previously developed by our research group. Our previous study showed that increasing MgO content introduced phase separation and thus controlling the crystallization and microstructure of the glass-ceramics. For this study we chose the glass ceramic system with 1.5 and 4.5 mol% MgO. The glass-ceramics were prepared by melt cast method followed by heat treatment at 650 °C to induce partial crystallization. The crystalline phase in the glass-ceramics was identified by x-ray diffraction and the quantification of crystalline and amorphous phase content was done using Rietveld refinement. The hardness and elastic moduli were measured by nanoindentation. Vickers hardness and fracture toughness were determined by micro indentation. Nano scratch test was performed and scratch morphology was characterized using AFM and FEG-SEM. In order to compare the machinability of the prepared glass-ceramic samples, milling experiments were carried out using CNC milling machine, and machining characteristics were compared by analysing machining force, surface roughness and microstructure of the machined surface. Presence of higher amount of lithium metasilicate (LS) crystals in higher magnesia containing glass-ceramic (G2) resulted in lower average force (Fyrms) as compared to lower MgO containing glass-ceramic. However, due to a wide range of variation in crystal size (150 nm - 2 µm) in higher MgO containing glass-ceramic, the force fluctuation was more than lower MgO containing glass-ceramics.

18.
Materials (Basel) ; 15(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591571

RESUMEN

Technological developments in the area of functionally graded multi-material manufacture are poised to disrupt the aerospace industry, providing the means for step-change improvements in performance through tailored component design. However, the challenges faced during the downstream processing, i.e., machining of such functionally graded multi-materials are unclear. In this study, the challenges involved when face-turning billets consisting of multiple alloys are assessed. To achieve this, a cylindrical billet consisting of Ti-64, Ti-6242, Ti-5553 and Beta C alloys was manufactured from powder feedstock using field-assisted sintering technique (FAST) and termed MulTi-FAST billets. A detailed study of the structural integrity during machining at the diffusion bond interfaces of multiple titanium alloy bond pairings in the MulTi-FAST billet was conducted. The machining forces were measured during face-turning to investigate the impact and behaviour of different alloy pairings during a continuous machining operation. The results showed the significant differences in force machining response, surface topography and the type of surface damage was dependent on the direction the titanium alloy graded pairings were machined in. In terms of subsurface microstructural damage, regardless of the machining direction, no critical damage was found in the vicinity of the bonded alloys. The findings provide an insight into the deformation characteristics and challenges faced in the machining of functionally graded components with multiple titanium alloys.

19.
Materials (Basel) ; 15(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35591632

RESUMEN

In the present study, the statistical design of experiments (DOE) method was applied to study and control the properties of near-eutectic Al-11%Si alloys. In this study, we developed regression equations between response variables, including hardness, yield stress, ultimate tensile stress, elongation, total cutting force, cutting power, and tool life, and varying factors which included the percentage of the alloying element in the composition and the modification level. These equations may be analyzed quantitatively to acquire an understating of the effects of the main variables and their interactions on the mechanical behavior and the machinability of the alloy under investigation. Analysis of variance (ANOVA) was performed to verify the fit and adequacy of the developed mathematical models. The results show that increasing the levels of Cu and Fe results in an increase in hardness, yield stress and ultimate tensile strength in both modified and non-modified alloys. On the other hand, both Cu and Fe appear to affect the elongation adversely, whereas the Sr level shows a positive effect on the elongation percentage. We found that the Sr level had the most significant effect on the cutting forces and cutting power, followed by Fe and Cu contents.

20.
Materials (Basel) ; 15(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454412

RESUMEN

The DD407 single crystal Ni-based superalloy with a face-centered cubic structure exhibits strong anisotropic characteristics. In order to reveal the material chip formation mechanism and the impact effect of crystal orientations on the materials' milling machinability, a combination of experimental observations and theoretical analysis were applied in this study. Considering the resolved shear stress and slip system theories, a fundamental theoretical explanation of the milling force and surface quality along different crystal directions on the (001) crystal plane of the DD407 single crystal Ni-based superalloy was proposed based on a previously constructed anisotropic milling model. Our work in this research verifies that [110] crystal direction on the (001) crystal plane of the DD407 single crystal Ni-based superalloy is the most optimal feeding direction during milling, taking into account surface roughness and morphology, slot bottom plastic deformation, work hardening, and chip edge burr feature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA