Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros











Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(7): e0236123, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38842338

RESUMEN

Lytic enzymes, or lysins for short, break down peptidoglycan and interrupt the continuity of the cell wall, which, in turn, causes osmotic lysis of the bacterium. Their ability to destroy bacteria from within makes them promising antimicrobial agents that can be used as alternatives or supplements to antibiotics. In this paper, we briefly summarize basic terms and concepts used to describe lysin sequences and delineate major lysin groups. More importantly, we describe the domain repertoire found in lysins and critically review bioinformatic tools or databases which are used in studies of these enzymes (with particular emphasis on the repositories of Hidden Markov models). Finally, we present a novel comprehensive, meticulously curated set of lysin-related family and domain models, sort them into clusters that reflect major families, and demonstrate that the selected models can be used to efficiently search for new lysins.


Asunto(s)
Pared Celular , Biología Computacional , Pared Celular/metabolismo , Pared Celular/química , Bacterias/genética , Bacterias/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
3.
Foods ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731706

RESUMEN

This study evaluated the biocontrol effect of isolated epiphytic yeasts (Papiliotrema terrestris, Hanseniaspora uvarum, and Rhodosporidium glutinis) against Botrytis cinerea and Alternaria alternata in blueberry fruits and its possible mechanisms. Our findings indicated that the three tested yeasts exerted a good biocontrol effect on postharvest diseases in blueberry, and that H. uvarum was the most effective. In addition, the three tested yeasts could improve the postharvest storage quality of blueberry fruits to some extent. H. uvarum demonstrated the strongest direct inhibitory effect on pathogens by suppressing spore germination, mycelial growth, and antifungal volatile organic compound (VOC) production. P. terrestris showed the highest extracellular lytic enzymes activities. It also had better adaptation to low temperature in fruit wounds at 4 °C. The biofilm formation capacity was suggested to be the main action mechanism of R. glutinis, which rapidly colonized fruit wounds at 20 °C. Several action mechanisms are employed by the superb biocontrol yeasts, while yeast strains possess distinctive characteristics and have substantially different action mechanisms.

4.
J Basic Microbiol ; 64(7): e2300643, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38578065

RESUMEN

Bacterial endophytes from plants harbor diverse metabolites that play major roles in biocontrol and improve plant growth. In this study, a total of 12 endophytic bacteria were isolated from the ginger rhizome. The strain K3 was highly effective in preventing mycelia growth of Pythium myriotylum (78.5 ± 1.5% inhibition) in dual culture. The cell-free extract (2.5%) of endophyte K3 inhibited 76.3 ± 4.8% mycelia growth, and 92.4 ± 4.2% inhibition was observed at a 5% sample concentration. The secondary metabolites produced by Bacillus licheniformis K3 showed maximum activity against Pseudomonas syringae (24 ± 1 mm zone of inhibition) and Xanthomonas campestris (28 ± 3 mm zone of inhibition). The strain K3 produced 28.3 ± 1.7 IU mL-1 protease, 28.3 ± 1.7 IU mL-1 cellulase, and 2.04 ± 0.13 IU mL-1 chitinase, respectively. The ginger rhizome treated with K3 in the greenhouse registered 53.8 ± 1.4% soft rot incidence, and the streptomycin-treated pot registered 78.3 ± 1.7% disease incidence. The selected endophyte K3 improved ascorbate peroxidase (1.37 ± 0.009 µmole ASC min-1 mg-1 protein), catalase (8.7 ± 0.28 µmole min-1 mg-1 protein), and phenylalanine ammonia-lyase (26.2 ± 0.99 Umg-1) in the greenhouse. In addition, K3 treatment in the field trial improved rhizome yield (730 ± 18.4 g) after 180 days (p < 0.01). The shoot length was 46 ± 8.3 cm in K3-treated plants, and it was about 31% higher than the control treatment (p < 0.01). The lytic enzyme-producing and growth-promoting endophyte is useful in sustainable crop production through the management of biotic stress.


Asunto(s)
Bacillus licheniformis , Endófitos , Enfermedades de las Plantas , Pythium , Zingiber officinale , Pythium/crecimiento & desarrollo , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Zingiber officinale/microbiología , Zingiber officinale/crecimiento & desarrollo , Bacillus licheniformis/crecimiento & desarrollo , Bacillus licheniformis/metabolismo , Rizoma/microbiología , Rizoma/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Antibiosis , Agentes de Control Biológico/farmacología , Metabolismo Secundario , Quitinasas/metabolismo
5.
Int Microbiol ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376639

RESUMEN

Pesticides, used in agriculture to control plant diseases, pose risks to the environment and human health. To address this, there's a growing focus on biocontrol, using microorganisms instead of chemicals. In this study, we aimed to identify Bacillus isolates as potential biological control agents. We tested 1574 Bacillus isolates for antifungal effects against pathogens like Botrytis cinerea, Fusarium solani, and Rhizoctonia solani. Out of these, 77 isolates formed inhibition zones against all three pathogens. We then investigated their lytic enzyme activities (protease, chitinase, and chitosanase) and the production of antifungal metabolites (siderophore and hydrogen cyanide). Coagulase activity was also examined to estimate potential pathogenicity in humans and animals. After evaluating all mechanisms, 19 non-pathogenic Bacillus isolates with significant antifungal effects were chosen. Molecular identification revealed they belonged to B. subtilis (n = 19) strains. The 19 native Bacillus strains, demonstrating strong antifungal effects in vitro, have the potential to form the basis for biocontrol product development. This could address challenges in agricultural production, marking a crucial stride toward sustainable agriculture.

6.
Appl Microbiol Biotechnol ; 108(1): 163, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252132

RESUMEN

The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: • Metagenomic analysis allowed the identification of a novel prophage endolysin • The endolysin belongs to type 2 amidase family with lysin motif region • The endolysin displays high thermostability and broad bactericidal spectrum.


Asunto(s)
Bacteriófagos , Manantiales de Aguas Termales , Suelo , Peptidoglicano , Antibacterianos/farmacología , Escherichia coli/genética
7.
J Fungi (Basel) ; 9(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37998928

RESUMEN

Managing organic agricultural wastes is a challenge in today's modern agriculture, where the production of different agricultural goods leads to the generation of large amounts of waste, for example, olive pomace and vine shoot in Mediterranean Europe. The discovery of a cost-effective and environment-friendly way to valorize such types of waste in Mediterranean Europe is encouraged by the European Union regulation. As an opportunity, organic agricultural waste could be used as culture media for solid-state fermentation (SSF) for fungal strains. This methodology represents a great opportunity to produce secondary metabolites like 6-pentyl-alpha-pyrone (6-PP), a lactone compound with antifungal properties against phytopathogens, produced by Trichoderma spp. Therefore, to reach adequate yields of 6-PP, lytic enzymes, and spores, optimization using specific agricultural cheap local wastes from Southeastern France is in order. The present study was designed to show the applicability of an experimental admixture design to find the optimal formulation that favors the production of 6-PP. To conclude, the optimized formulation of 6-PP production by Trichoderma under SSF contains 18% wheat bran, 23% potato flakes, 20% olive pomace, 14% olive oil, 24% oatmeal, and 40% vine shoots.

8.
Plants (Basel) ; 12(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005769

RESUMEN

Coriandrum sativum L. is a globally significant economic herb with medicinal and aromatic properties. While coriander leaf blight disease was previously confined to India and the USA, this study presents new evidence of its outbreak in Africa and the Middle East caused by Alternaria dauci. Infected leaves display irregular chlorotic to dark brown necrotic lesions along their edges, resulting in leaf discoloration, collapse, and eventual death. The disease also impacts inflorescences and seeds, significantly reducing seed quality. Koch's postulates confirmed the pathogenicity of the fungus through the re-isolation of A. dauci from artificially infected leaves, and its morphology aligns with typical A. dauci features. Notably, this study identified strong lytic activity (cellulase: 23.76 U, xylanase: 12.83 U, pectinase: 51.84 U, amylase: 9.12 U, and proteinase: 5.73 U), suggesting a correlation with pathogenicity. Molecular characterization using ITS (ON171224) and the specific Alt-a-1 gene (OR236142) supports the fungal morphology. This research provides the first comprehensive documentation of the pathological, lytic, and molecular evidence of A. dauci leaf blight disease on coriander. Future investigations should prioritize the development of resistant coriander varieties and sustainable disease management strategies, including the use of advanced molecular techniques for swift and accurate disease diagnosis to protect coriander from the devastating impact of A. dauci.

9.
BMC Microbiol ; 23(1): 210, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543572

RESUMEN

BACKGROUND: A wide variety of microorganisms, including bacteria, live in the rhizosphere zone of plants and have an impact on plant development both favorably and adversely. The beneficial outcome is due to the presence of rhizobacteria that promote plant growth (PGPR). RESULTS: In this study, a bacterial strain was isolated from lupin rhizosphere and identified genetically as Serratia marcescens (OK482790). Several biochemically and genetically characteristics were confirmed in vitro and in vivo to determine the OK482790 strain ability to be PGPR. The in vitro results revealed production of different lytic enzymes (protease, lipase, cellulase, and catalase), antimicrobial compounds (hydrogen cyanide, and siderophores), ammonia, nitrite, and nitrate and its ability to reduce nitrate to nitrite. In silico and in vitro screening proposed possible denitrification-DNRA-nitrification pathway for OK482790 strain. The genome screening indicated the presence of nitrite and nitrate genes encoding Nar membrane bound sensor proteins (NarK, NarQ and NarX). Nitrate and nitrite reductase encoding genes (NarI, NarJ, NarH, NarG and NapC/NirT) and (NirB, NirC, and NirD) are also found in addition to nitroreductases (NTR) and several oxidoreductases. In vivo results on wheat seedlings confirmed that seedlings growth was significantly improved by soil inoculation of OK482790 strain. CONCLUSIONS: This study provides evidence for participation of S. marcescens OK482790 in nitrogen cycling via the denitrification-DNRA-nitrification pathway and for its ability to produce several enzymes and compounds that support the beneficial role of plant-microbe interactions to sustain plant growth and development for a safer environment.


Asunto(s)
Nitratos , Nitritos , Nitratos/metabolismo , Nitritos/metabolismo , Nitrificación , Serratia marcescens/metabolismo , Desnitrificación , Desarrollo de la Planta , Nitrógeno
10.
mBio ; 14(4): e0078723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37486262

RESUMEN

The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.


Asunto(s)
Agaricus , Oxalobacteraceae , Sistemas de Secreción Bacterianos , Agaricus/genética , Hongos , Bacterias
11.
ACS Sens ; 8(7): 2627-2634, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37409885

RESUMEN

In this work, we developed a biosensor for the indirect detection of bacteria via their lysate. The developed sensor is based on porous silicon membranes, which are known for their many attractive optical and physical properties. Unlike traditional porous silicon biosensors, the selectivity of the bioassay presented in this work does not rely on bio-probes attached to the sensor surface; the selectivity is added to the analyte itself, by the addition of lytic enzymes that target only the desired bacteria. The resulting bacterial lysate is then able to penetrate into the porous silicon membrane and affects its optical properties, while intact bacteria accumulate on top of the sensor. The porous silicon sensors, fabricated using standard microfabrication techniques, are coated with TiO2 layers using atomic layer deposition. These layers serve as passivation but also enhance the optical properties. The performance of the TiO2-coated biosensor is tested for the detection of Bacillus cereus, using the bacteriophage-encoded PlyB221 endolysin as the lytic agent. The sensitivity of the biosensor is much improved compared to previous works, reaching 103 CFU/mL, with a total assay time of 1 h 30 min. The selectivity and versatility of the detection platform are also demonstrated, as is the detection of B. cereus in a complex analyte.


Asunto(s)
Técnicas Biosensibles , Silicio , Porosidad , Técnicas Biosensibles/métodos
12.
Microorganisms ; 11(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37512940

RESUMEN

Lysobacter species have attracted increasing attention in recent years due to their capacities to produce diverse secondary metabolites against phytopathogens. In this research, we analyzed the genomic and transcriptomic patterns of Lysobacter capsici CK09. Our data showed that L. capsici CK09 harbored various contact-independent biocontrol traits, such as fungal cell wall lytic enzymes and HSAF/WAP-8294A2 biosynthesis, as well as several contact-dependent machineries, including type 2/4/6 secretion systems. Additionally, a variety of hydrolytic enzymes, particularly extracellular enzymes, were found in the L. capsici CK09 genome and predicted to improve its adaption in soil. Furthermore, several systems, including type 4 pili, type 3 secretion system and polysaccharide biosynthesis, can provide a selective advantage to L. capsici CK09, enabling the species to live on the surface in soil. The expression of these genes was then confirmed via transcriptomic analysis, indicating the activities of these genes. Collectively, our research provides a comprehensive understanding of the biocontrol potential and soil adaption of L. capsici CK09 and implies the potential of this strain for application in the future.

13.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175929

RESUMEN

Bacteriophages have a wide range of applications such as combating antibiotic resistance, preventing food contamination for food safety, and as biomarkers to indirectly assess the quality of water. Additionally, bacteriophage components (endolysins and coat proteins) have a lot of applications in food processing, vaccine design, and the delivery of cargo to the body. Therefore, bacteriophages/components have a multitude of applications in human, plant/veterinary, and environmental health (One Health). Despite their versatility, bacteriophage/component use is mostly limited to temperatures within 4-40 °C. This limits their applications (e.g., in food processing conditions, pasteurization, and vaccine design). Advances in thermophilic bacteriophage research have uncovered novel thermophilic endolysins (e.g., ΦGVE2 amidase and MMPphg) that can be used in food processing and in veterinary medicine. The endolysins are thermostable at temperatures > 65 °C and have broad antimicrobial activities. In addition to thermophilic endolysins, enzymes (DNA polymerase and ligases) derived from thermophages have different applications in molecular biology/biotechnology: to generate DNA libraries and develop diagnostics for human and animal pathogens. Furthermore, coat proteins from thermophages are being explored to develop virus-like particle platforms with versatile applications in human and animal health. Overall, bacteriophages, especially those that are thermophilic, have a plethora of applications in One Health.


Asunto(s)
Bacteriófagos , Salud Única , Vacunas , Humanos , Animales , Bacteriófagos/metabolismo , Endopeptidasas/metabolismo , Inocuidad de los Alimentos , Contaminación de Alimentos , Vacunas/metabolismo
14.
AIMS Microbiol ; 9(1): 151-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891531

RESUMEN

It is certainly difficult to estimate productivity losses due to the action of phytopathogenic nematodes but it might be about 12 % of world agricultural production. Although there are numerous tools to reduce the effect of these nematodes, there is growing concern about their environmental impact. Lysobacter enzymogenes B25 is an effective biological control agent against plant-parasitic nematodes, showing control over root-knot nematodes (RKN) such as Meloidogyne incognita and Meloidogyne javanica. In this paper, the efficacy of B25 to control RKN infestation in tomato plants (Solanum lycopersicum cv. Durinta) is described. The bacterium was applied 4 times at an average of concentration around 108 CFU/mL showing an efficacy of 50-95 % depending on the population and the pressure of the pathogen. Furthermore, the control activity of B25 was comparable to that of the reference chemical used. L. enzymogenes B25 is hereby characterized, and its mode of action studied, focusing on different mechanisms that include motility, the production of lytic enzymes and secondary metabolites and the induction of plant defenses. The presence of M. incognita increased the twitching motility of B25. In addition, cell-free supernatants obtained after growing B25, in both poor and rich media, showed efficacy in inhibiting RKN egg hatching in vitro. This nematicidal activity was sensitive to high temperatures, suggesting that it is mainly due to extracellular lytic enzymes. The secondary metabolites heat-stable antifungal factor and alteramide A/B were identified in the culture filtrate and their contribution to the nematicidal activity of B25 is discussed. This study points out L. enzymogenes B25 as a promising biocontrol microorganism against nematode infestation of plants and a good candidate to develop a sustainable nematicidal product.

15.
Microorganisms ; 10(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144416

RESUMEN

Ralstonia solanacearum is one of the globally significant plant pathogens that infect a wide host range of economically important plants. A study was conducted to evaluate the hypothesis that an avirulent strain of R. solanacearum can act as a biocontrol mediator for managing potato bacterial wilt. Virulent R. solanacearum was isolated and identified (GenBank accession number; OP180100). The avirulent strain was obtained from the virulent strain through storage for 3 weeks until the development of deep red colonies. The virulent strain had higher lytic activity than the avirulent strain. Tubers' treatments by the avirulent strain of R. solanacearum, (supernatant, boiled supernatant, and dead cells) significantly reduced plant disease rating and increased the growth, physiological activities, and biomass of potato compared to the untreated, infected control. The major components detected by GC-MS in the supernatant revealed 10.86% palmitic acid (virulent), and 18.03% 1,3-dioxolane, 2,4,5-trimethyl- (avirulent), whereas the major component in the boiled supernatant was 2-hydroxy-gamma-butyrolactone in the virulent (21.17%) and avirulent (27.78%) strains. This is the first research that assessed the influence of boiled supernatant and dead cells of virulent and avirulent R.solanacearum strains in controlling bacterial wilt disease. Additional work is encouraged for further elucidation of such a topic.

16.
World J Microbiol Biotechnol ; 38(11): 210, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36050590

RESUMEN

Pelidnota luridipes Blanchard (1850) is a tropical beetle of the family Scarabaeidae, whose larvae live on wood without parental care. Microbiota of mid- and hindgut of larvae was evaluated by culture-dependent and independent methods, and the results show a diverse microbiota, with most species of bacteria and fungi shared between midgut and hindgut. We isolated 272 bacterial and 29 yeast isolates, identified in 57 and 7 species, respectively, while using metabarcoding, we accessed 1,481 and 267 OTUs of bacteria and fungi, respectively. The composition and abundance of bacteria and fungi differed between mid- and hindgut, with a tendency for higher richness and diversity of yeasts in the midgut, and bacteria on the hindgut. Some taxa are abundant in the intestine of P. luridipes larvae, such as Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria; as well as Saccharomycetales and Trichosporonales yeasts. Mid- and hindgut metabolic profiles differ (e.g. biosynthesis of amino acids, cofactors, and lipopolysaccharides) with higher functional diversity in the hindgut. Isolates have different functional traits such as secretion of hydrolytic enzymes and antibiosis against pathogens. Apiotrichum siamense L29A and Bacillus sp. BL17B protected larvae of the moth Galleria mellonella, against infection by the pathogens Listeria monocytogenes ATCC19111 and Pseudomonas aeruginosa ATCC 9027. This is the first work with the larval microbiome of a Rutelini beetle, demonstrating its diversity and potential in prospecting microbial products as probiotics. The functional role of microbiota for the nutrition and adaptability of P. luridipes larvae needs to be evaluated in the future.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Probióticos , Animales , Bacterias , Hongos/genética , Larva/microbiología , Metaboloma , ARN Ribosómico 16S
17.
Front Microbiol ; 13: 986229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081805

RESUMEN

Grapes harbour a plethora of non-conventional yeast species. Over the past two decades, several of the species have been extensively characterised and their contribution to wine quality is better understood. Beyond fermentation, some of the species have been investigated for their potential as alternative biological tools to reduce grape and wine spoilage. However, such studies remain limited to a few genera. This work aimed to evaluate the antagonistic activity of grape must-derived non-conventional yeasts against Botrytis cinerea and non-Botrytis bunch-rotting moulds and to further elucidate mechanisms conferring antifungal activity. A total of 31 yeast strains representing 21 species were screened on different agar media using a dual culture technique and liquid mixed cultures, respectively. Pichia kudriavzevii was the most potent with a minimum inhibitory concentration of 102 cells/mL against B. cinerea but it had a narrow activity spectrum. Twelve of the yeast strains displayed broad antagonistic activity, inhibiting three strains of B. cinerea (B05. 10, IWBT FF1 and IWBT FF2), a strain of Aspergillus niger and Alternaria alternata. Production of chitinases and glucanases in the presence of B. cinerea was a common feature in most of the antagonists. Volatile and non-volatile compounds produced by antagonistic yeast strains in the presence of B. cinerea were analysed and identified using gas and liquid chromatography mass spectrometry, respectively. The volatile compounds identified belonged mainly to higher alcohols, esters, organosulfur compounds and monoterpenes while the non-volatile compounds were cyclic peptides and diketopiperazine. To our knowledge, this is the first report to demonstrate inhibitory effect of the non-volatile compounds produced by various yeast species.

18.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080312

RESUMEN

Root rot is one of the most significant soil and seed-borne fungal diseases, limiting the cultivation of fenugreek plants. Endophytic bacteria and their natural bioproducts have emerged as growth promoters and disease suppressors in the current era. Despite limited research, seeds are a good funder of endophytic microbiomes, which are transmitted from them to other seedling parts, thereby providing a shield against biotic and abiotic anxiety and promoting the growth at early germination and later stages. The current study evaluated the hypothesis that seed endophytic bacteria and their lytic enzymes, growth promotors, and antifungal molecules can induce growth, and inhibit root rot disease development at the same time. The isolation trial from fenugreek seeds revealed a lytic Achromobacter sp., which produces indole acetic acid, has antifungal compounds (e.g., 2-Butanol, 3,3'-oxybis-), and reduces the growth of Rhizoctonia solani by 43.75%. Under the greenhouse and natural field conditions, bacterial cells and/or supernatant improved the growth, physiology, and yield performance of fenugreek plants, and effectively suppressed the progress of root rot disease; this is the first extensive study that uses a new seed-borne endophytic bacterium as a plant-growth-promoting, and biocontrol tool against the sclerotia-forming; R. solani; the causative of fenugreek root rot.


Asunto(s)
Achromobacter , Trigonella , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizoctonia , Semillas
19.
Front Microbiol ; 13: 816695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359731

RESUMEN

Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.

20.
Appl Microbiol Biotechnol ; 106(7): 2603-2617, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35262787

RESUMEN

Rice (Oryza sativa L.) is one of the most important staple foods consumed in many countries of the world. It is mostly consumed in developing countries where different chemical fertilizers are used to improve the productivity of the crop plant. In the present study, endophytic actinomycetes isolated from Rumex dentatus were identified morphologically and by scanning electron microscopy. Butyl isobutyl phthalate (BIBP) was isolated from the root endophyte Streptomyces sp. JR9 using column chromatography and HPLC methods. The compound was tested for its effect on rice seed germination. BIBP, extracts, and isolates were evaluated for their plant growth effect on rice in a growth chamber. Isolates were also screened in vitro for phosphate solubilization activity and enzyme production. Indole-3-acetic acid (IAA) and BIBP produced in extracts were quantified and detected using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods, respectively. BIBP was found to increase the germination of rice seeds by 6 to 12% in treated samples and displayed potent effect at lowest concentration (0.437 µM). Both the compound and the extract depicted significant increases in almost all growth parameters at lowest concentration of 0.125 µg/mL and 62.5 µg/mL, respectively. BIBP also increased significantly shoot length, fresh root, fresh shoot, and dried shoot weight at high concentrations and was more potent than the standard phytohormone IAA. HPLC quantification showed 7.952 µg/mg and 0.371 µg/mg of IAA in extracts of Streptomyces sp. JR9 and the stem endophyte Streptomyces sp. KS3, respectively. IAA containing extract of JR9 increased significantly most growth parameters at lowest concentration (125 µg/mL). The extract of KS3 depicted significant increases in almost all growth parameters at high concentration (500 µg/mL). Our investigation showed that streptomycetes isolated from R. dentatus and BIBP are potent growth promoting agents and can be used in agriculture as bio-fertilizer to improve the growth and productivity of rice. KEY POINTS: • Butyl isobutyl phthalate (BIBP) isolated from endophytic Streptomyces sp. JR9 is a potent rice seed germination activator and promotes significantly the growth of rice • Isolated endophytes showed the ability to produce enzymes and phytohormone IAA • Isolates enhanced significantly the growth of rice.


Asunto(s)
Oryza , Rumex , Streptomyces , Endófitos , Ácidos Ftálicos , Extractos Vegetales , Reguladores del Crecimiento de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA