Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 1): 131872, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677706

RESUMEN

The increasing incidence of obesity has led to widespread attention in the exploration of natural ingredients. Ginseng polysaccharides (PGP), the main components from Panax ginseng, have been reported potential effect to attenuate obesity and regulate lipid metabolism. In this study, we found that PGP inhibited the high-fat diet (HFD)-induced weight gain, fat ratio and fat tissue weight after 8-week administration. Serum and liver lipid analysis showed that PGP decreased the levels of triglyceride and total cholesterol, which was mediated by the inhibition of key genes for fatty acid and cholesterol metabolisms. Metabolomics studies showed that the inhibitory effect of PGP on liver lipid accumulation was significantly correlated with its regulation of citric acid cycle and lysine degradation. PGP regulated the expression of genes related to lysine degradation in both liver tissue and hepatocytes. In addition, PGP reshaped the composition of fecal microbiota at the genus and species levels in obese mice. Spearman's correlation analysis demonstrated that Staphylococcus sciuri, Staphylococcus lentus, and Pseudoflavonifractor sp. An85 may be the potential targets that PGP maintains the abundance of l-lysine against obesity. It concluded that PGP can attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation.


Asunto(s)
Dieta Alta en Grasa , Heces , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Hígado , Lisina , Obesidad , Panax , Polisacáridos , Animales , Lisina/metabolismo , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Panax/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Heces/microbiología , Dieta Alta en Grasa/efectos adversos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Cytotechnology ; 75(5): 363-379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37655273

RESUMEN

miRNA expressions are altered during development of breast cancer (BC). The aim of this study is to identify novel cancer-related miRNAs and pathways to understand the mechanisms of BC subtypes. GSE59247 dataset was downloaded from gene expression omnibus (GEO) database and analyzed with GEO2R software. The differential miRNA expressions in BC cells were evaluated by miRNome PCR array. Venn diagram was used to reveal co-differentially expressed miRNAs between GSE59247 dataset and miRNome array. Clinical prognostic significance of selected miRNAs was evaluated via Kaplan Meier curve. KEGG pathway enrichment analysis was performed to find miRNA targets and results were validated by TNM plot analysis and q-RT-PCR. TargetScan database was used to predict the association of miRNAs and 3'-untranslated regions of target genes and their expressions were visualized by human protein atlas database. Venn diagram analysis showed overlap of 11 miRNAs from in silico and in vitro analysis. KEGG analysis revealed 'Lysine Degradation Pathway' as the most significantly enriched targeted pathway. q-RT-PCR results confirmed that Lysine degradation pathway related genes SETD7, SETDB2, EHHADH, SETMAR, KMT2A and SUV39H2 were differentially expressed in BC cells. Target prediction analysis identified binding sites between miR-1323-5p and 3'-UTR of SETD7, miR-129-5p and 3'-UTR of EHHADH and miR-628-5p and 3'-UTR of SETDB2 mRNA. Notably, miR-1323-5p, miR-129-5p, and miR-628-5p are differentially expressed in BC and they bind to 3'UTR of critical genes of Lysine degradation pathway, namely SETD7, SETDB2 and EHHADH. These miRNAs might serve as potential diagnostic and prognostic biomarkers for progression.

3.
JIMD Rep ; 64(5): 367-374, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701333

RESUMEN

Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 µmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.

4.
Biotechnol Bioeng ; 120(1): 312-317, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226358

RESUMEN

α-Aminoadipic acid (AAA) is a nonproteinogenic amino acid with potential applications in pharmaceutical, chemical and animal feed industries. Currently, AAA is produced by chemical synthesis, which suffers from high cost and low production efficiency. In this study, we engineered Escherichia coli for high-level AAA production by coupling lysine biosynthesis and degradation pathways. First, the lysine-α-ketoglutarate reductase and saccharopine dehydrogenase from Saccharomyces cerevisiae and α-aminoadipate-δ-semialdehyde dehydrogenase from Rhodococcus erythropolis were selected by in vitro enzyme assays for pathway assembly. Subsequently, lysine supply was enhanced by blocking its degradation pathway, overexpressing key pathway enzymes and improving nicotinamide adenine dineucleotide phosphate (NADPH) regeneration. Finally, a glutamate transporter from Corynebacterium glutamicum was introduced to elevate AAA efflux. The final strain produced 2.94 and 5.64 g/L AAA in shake flasks and bioreactors, respectively. This work provides an efficient and sustainable way for AAA production.


Asunto(s)
Ácido 2-Aminoadípico , Lisina , Ácido 2-Aminoadípico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sacaropina Deshidrogenasas/metabolismo
5.
Appl Biochem Biotechnol ; 194(11): 5443-5455, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35789984

RESUMEN

Acute ischemic stroke (AIS) is characterized by a sudden blockage of one of the main arteries supplying blood to the brain, leading to insufficient oxygen and nutrients for brain cells to function properly. Unfortunately, metabolic alterations in the biofluids with AIS are still not well understood. In this study, we performed high-throughput target metabolic analysis on 44 serum samples, including 22 from AIS patients and 22 from healthy controls. Multiple-reaction monitoring analysis of 180 common metabolites revealed a total of 29 metabolites that changed significantly (VIP > 1, p < 0.05). Multivariate statistical analysis unraveled a striking separation between AIS patients and healthy controls. Comparing the AIS group with the control group, the contents of argininosuccinic acid, beta-D-glucosamine, glycerophosphocholine, L-abrine, and L-pipecolic acid were remarkably downregulated in AIS patients. Twenty-nine out of 112 detected metabolites enriched in disturbed metabolic pathways, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, lysine degradation, phenylalanine, tyrosine, and tryptophan biosynthesis metabolic pathways. Collectively, these results will provide a sensitive, feasible diagnostic prospect for AIS patients.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico , Triptófano , Ácido Argininosuccínico , Lisina , Biomarcadores/metabolismo , Metabolómica/métodos , Tirosina , Fenilalanina , Glucosamina , Oxígeno , Glicerofosfolípidos , ARN de Transferencia
6.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897808

RESUMEN

The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Complejo Cetoglutarato Deshidrogenasa , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Humanos , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Lisina/metabolismo , NAD/metabolismo , Oxidación-Reducción
7.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682742

RESUMEN

Absence epilepsy syndromes are part of the genetic generalized epilepsies, the pathogenesis of which remains poorly understood, although a polygenic architecture is presumed. Current focus on single molecule or gene identification to elucidate epileptogenic drivers is unable to fully capture the complex dysfunctional interactions occurring at a genetic/proteomic/metabolomic level. Here, we employ a multi-omic, network-based approach to characterize the molecular signature associated with absence epilepsy-like phenotype seen in a well validated rat model of genetic generalized epilepsy with absence seizures. Electroencephalographic and behavioral data was collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS, n = 6) and non-epileptic controls (NEC, n = 6), followed by proteomic and metabolomic profiling of the cortical and thalamic tissue of rats from both groups. The general framework of weighted correlation network analysis (WGCNA) was used to identify groups of highly correlated proteins and metabolites, which were then functionally annotated through joint pathway enrichment analysis. In both brain regions a large protein-metabolite module was found to be highly associated with the GAERS strain, absence seizures and associated anxiety and depressive-like phenotype. Quantitative pathway analysis indicated enrichment in oxidative pathways and a downregulation of the lysine degradation pathway in both brain regions. GSTM1 and ALDH2 were identified as central regulatory hubs of the seizure-associated module in the somatosensory cortex and thalamus, respectively. These enzymes are involved in lysine degradation and play important roles in maintaining oxidative balance. We conclude that the dysregulated pathways identified in the seizure-associated module may be involved in the aetiology and maintenance of absence seizure activity. This dysregulated activity could potentially be modulated by targeting one or both central regulatory hubs.


Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Animales , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Lisina , Proteómica , Ratas , Convulsiones/metabolismo
8.
Front Cell Infect Microbiol ; 12: 833269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237533

RESUMEN

There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Biopelículas , Cadaverina , Humanos , Lisina/metabolismo , Metabolómica , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo
9.
BMC Cardiovasc Disord ; 21(1): 403, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418957

RESUMEN

BACKGROUND: Cardiomyocyte metabolism changes before cardiac remodeling, but its role in early cardiac hypertrophy detection remains unclear. This study investigated early changes in plasma metabolomics in a pressure-overload cardiac hypertrophy model induced by transverse aortic constriction (TAC). METHODS: The TAC model was constructed by partly ligating the aortic arch. Twelve Sprague-Dawley rats were randomly divided into the TAC group (n = 6) and sham group (n = 6). Three weeks after surgery, cardiac echocardiography was performed to assess cardiac remodeling and function. Hematoxylin/eosin (HE), Masson, and wheat germ agglutinin (WGA) stains were used to observe pathological changes. Plasma metabolites were detected by UPLC-QTOFMS and Q-TOFMS. Specific metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA). Metabolic pathways were characterized by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the predictive value of the screened metabolites was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS: Three weeks after surgery, the TAC and sham groups had similar left heart function and interventricular septum and diastolic left ventricular posterior wall thicknesses. However, on pathological examination, the cross-sectional area of cardiomyocytes and myocardial fibrosis severity were significantly elevated in TAC rats. OPLS-DA showed different metabolic patterns between the TAC and sham groups. Based on the criteria VIP > 1 and P < 0.05, 13 metabolites were screened out. KEGG analysis identified disrupted lysine degradation through the related metabolites 5-aminopentanoic acid, N6-acetyl-L-lysine, and L-lysine, with areas under the ROC curve (AUCs) of 0.917, 0.889, and 0.806, respectively, for predicting compensated cardiomyocyte hypertrophy. CONCLUSION: Disruption of lysine degradation might be involved in early cardiac hypertrophy development, and related metabolites might be potential predictive and interventional targets for subclinical cardiomyocyte hypertrophy.


Asunto(s)
Metabolismo Energético , Hipertrofia Ventricular Izquierda/metabolismo , Lisina/metabolismo , Miocardio/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Aorta Torácica/fisiopatología , Aorta Torácica/cirugía , Presión Arterial , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Ligadura , Masculino , Metaboloma , Metabolómica , Miocardio/patología , Proteolisis , Ratas Sprague-Dawley , Factores de Tiempo
10.
J Exp Bot ; 72(13): 4634-4645, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33993299

RESUMEN

The adaptation of plant metabolism to stress-induced energy deficiency involves profound changes in amino acid metabolism. Anabolic reactions are suppressed, whereas respiratory pathways that use amino acids as alternative substrates are activated. This review highlights recent progress in unraveling the stress-induced amino acid oxidation pathways, their regulation, and the role of amino acids as signaling molecules. We present an updated map of the degradation pathways for lysine and the branched-chain amino acids. The regulation of amino acid metabolism during energy deprivation, including the coordinated induction of several catabolic pathways, is mediated by the balance between TOR and SnRK signaling. Recent findings indicate that some amino acids might act as nutrient signals in TOR activation and thus promote a shift from catabolic to anabolic pathways. The metabolism of the sulfur-containing amino acid cysteine is highly interconnected with TOR and SnRK signaling. Mechanistic details have recently been elucidated for cysteine signaling during the abscisic acid-dependent drought response. Local cysteine synthesis triggers abscisic acid production and, in addition, cysteine degradation produces the gaseous messenger hydrogen sulfide, which promotes stomatal closure via protein persulfidation. Amino acid signaling in plants is still an emerging topic with potential for fundamental discoveries.


Asunto(s)
Ácido Abscísico , Transducción de Señal , Adaptación Fisiológica , Aminoácidos , Plantas
11.
Mol Genet Metab ; 133(2): 157-181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33965309

RESUMEN

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encéfalo/metabolismo , Gliosis/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Arginina/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Creatina/sangre , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Gliosis/metabolismo , Gliosis/patología , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lisina/metabolismo , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Ratas
12.
Mol Genet Metab ; 131(1-2): 14-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32768327

RESUMEN

Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Epilepsia/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Lisina/metabolismo , Mitocondrias/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Citosol/metabolismo , Epilepsia/metabolismo , Epilepsia/patología , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/biosíntesis , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Mitocondrias/patología , Especificidad de Órganos/genética , Peroxisomas/genética , Peroxisomas/metabolismo
13.
Appl Microbiol Biotechnol ; 103(21-22): 8799-8812, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31522285

RESUMEN

Bacitracin is a kind of macrocyclic dodecapeptide that produced by Bacillus, precursor supply served as a critical role in bacitracin production, here, the aim of this study wants to improve bacitracin production by enhancing Lysine (Lys) supply via metabolic engineering of B. licheniformis DW2, an industrial strain for bacitracin production. Firstly, exogenous addition of Lys was proven to be favorable for bacitracin production, and the strain LYS2 was attained through strengthening Lys synthetic pathways via overexpressing diaminopimelate decarboxylase LysA from B. licheniformis and diaminopimelate dehydrogenase DdH from Corynebacterium glutamicum, and the bacitracin produced by LYS2 was increased to 838.53 U/mL by 10.85%, compared with that of DW2 (756.45 U/mL). Secondly, oxaloacetate, the precursor of Lys, was accumulated by overexpressing pyruvate carboxylase PycA in LYS2, and 17.06% increase of bacitracin yield was attained in LYS3 (885.53 U/mL), compared with DW2. Thirdly, lysine decarboxylase gene yaaO was deleted to weaken Lys degradation, and the attained strain LYS4 showed further increased bacitracin production from 885.53 to 923.43 U/mL. Lastly, the transporter LysE was confirmed to act as a Lys exporter; LysP and YvsH were identified as the Lys importers in B. licheniformis DW2, and bacitracin yield was increased to 975.43 U/mL by 28.95% in final strain LYS5 via engineering the Lys transporters. Taken together, this study implied that metabolic engineering of Lys supply modules is an efficient strategy for enhancement production of bacitracin, and provided a promising strain of B. licheniformis for industrial production of bacitracin.


Asunto(s)
Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Bacitracina/biosíntesis , Lisina/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Bacillus licheniformis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Corynebacterium glutamicum/enzimología , Ingeniería Metabólica , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo
14.
Biochim Biophys Acta Bioenerg ; 1859(9): 932-939, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29752936

RESUMEN

Herein are reported findings in vitro suggesting both functional and regulatory cross-talk between the human 2-oxoglutarate dehydrogenase complex (hOGDHc), a key regulatory enzyme within the tricarboxylic acid cycle (TCA cycle), and a novel 2-oxoadipate dehydrogenase complex (hOADHc) from the final degradation pathway of l-lysine, l-hydroxylysine and l-tryptophan. The following could be concluded from our studies by using hOGDHc and hOADHc assembled from their individually expressed components in vitro: (i) Different substrate preferences (kcat/Km) were displayed by the two complexes even though they share the same dihydrolipoyl succinyltransferase (hE2o) and dihydrolipoyl dehydrogenase (hE3) components; (ii) Different binding modes were in evidence for the binary hE1o-hE2o and hE1a-hE2o subcomplexes according to fluorescence titrations using site-specifically labeled hE2o-derived proteins; (iii) Similarly to hE1o, the hE1a also forms the ThDP-enamine radical from 2-oxoadipate (electron paramagnetic resonance detection) in the oxidative half reaction; (iv) Both complexes produced superoxide/H2O2 from O2 in the reductive half reaction suggesting that hE1o, and hE1a (within their complexes) could both be sources of reactive oxygen species generation in mitochondria from 2-oxoglutarate and 2-oxoadipate, respectively; (v) Based on our findings, we speculate that hE2o can serve as a trans-glutarylase, in addition to being a trans-succinylase, a role suggested by others; (vi) The glutaryl-CoA produced by hOADHc inhibits hE1o, as does succinyl-CoA, suggesting a regulatory cross-talk between the two complexes on the different metabolic pathways.


Asunto(s)
Adipatos/metabolismo , Ciclo del Ácido Cítrico , Hidroxilisina/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Lisina/metabolismo , Triptófano/metabolismo , Humanos , Técnicas In Vitro
15.
Genet. mol. biol ; 40(2): 540-549, Apr.-June 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892408

RESUMEN

Abstract The mechanisms involved in the fast growth of Angiostrongylus cantonensis from fifth-stage larvae (L5) to female adults and how L5 breaks through the blood-brain barrier in a permissive host remain unclear. In this work, we compared the transcriptomes of these two life stages to identify the main factors involved in the rapid growth and transition to adulthood. RNA samples from the two stages were sequenced and assembled de novo. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of 1,346 differentially expressed genes between L5 and female adults was then undertaken. Based on a combination of analytical results and developmental characteristics, we suggest that A. cantonensis synthesizes a large amount of cuticle in L5 to allow body dilatation in the rapid growth period. Products that are degraded via the lysosomal pathway may provide sufficient raw materials for cuticle production. In addition, metallopeptidases may play a key role in parasite penetration of the blood-brain barrier during migration from the brain. Overall, these results indicate that the profiles of each transcriptome are tailored to the need for survival in each developmental stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA