Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 10(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38391423

RESUMEN

Lost circulation control remains a challenge in drilling operations. Self-healing gels, capable of self-healing in fractures and forming entire gel block, exhibit excellent resilience and erosion resistance, thus finding extensive studies in lost circulation control. In this study, layered double hydroxide, Acrylic acid, 2-Acrylamido-2-methylpropane sulfonic acid, and CaCl2 were employed to synthesize organic-inorganic nanocomposite gel with self-healing properties. The chemical properties of nanocomposite gels were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy and thermogravimetric analysis. layered double hydroxide could be dispersed and exfoliated in the mixed solution of Acrylic acid and 2-Acrylamido-2-methylpropane sulfonic acid, and the swelling behavior, self-healing time, rheological properties, and mechanical performance of the nanocomposite gels were influenced by the addition of layered double hydroxide and Ca2+. Optimized nanocomposite gel AC6L3, at 90 °C, exhibits only a self-healing time of 3.5 h in bentonite mud, with a storage modulus of 4176 Pa, tensile strength of 6.02 kPa, and adhesive strength of 1.94 kPa. In comparison to conventional gel, the nanocomposite gel with self-healing capabilities demonstrated superior pressure-bearing capacity. Based on these characteristics, the nanocomposite gel proposed in this work hold promise as a candidate lost circulation material.

2.
Gels ; 9(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37998952

RESUMEN

Aiming at the complex strata, lost circulation often occurs. and lost circulation control becomes a difficult issue. A drilling fluid loss accident delays the drilling progress and even causes major economic losses. If we take a self-made sodium polyacrylate grafting and modify a starch water absorbent resin, using an amphiphilic compatibilizer as raw material through mechanical blending and chemical compatibilization, we can synthesize a resin-rubber blend swelling lost circulation material. This material presents a good resistance to anti-high-temperature performance, but the quality declines while the temperature is higher than 363 °C, and with the increasing temperature, the water-swelling expansion ratio becomes higher. The range of the water-swelling expansion ratio is 8 to 25 times and the water swelling rate becomes larger along with the reduced diameter of the lost circulation materials and decreases with the increasing salinity. The resin-rubber blend swelling lost circulation material after water swelling has excellent toughness and high elastic deformation capacity, thus, forming a 7 Mpa to 2 mm fracture via expansion, extrusion, deformation, and filling, which presents a good performance for fracture plugging and realizes the purpose of lost circulation control.

3.
Polymers (Basel) ; 15(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959898

RESUMEN

Fractured reservoirs are widely distributed and rich in hydrocarbon resources. When encountering fractured reservoirs during the drilling process, it is often accompanied by formation losses characterized by high leak-off rates, causing severe damage to the reservoir and hindering the detection of oil and gas layers, which is not conducive to the accurate and efficient development of the reservoirs. Conventional plugging materials have poor retention effects in the fractures, resulting in the low stability of the sealing layer. The treatment of malignant lost circulation in fractured formations is an urgent problem to be solved in drilling engineering. This article focuses on improving the success rate of formation plugging through the combined use of multiple plugging materials and develops a composite hydrogel that can effectively reduce leakage rates. This hydrogel is mainly composed of materials such as polyvinyl alcohol, borax, and sodium silicate. It has good temperature resistance, maintains good gel strength at 60 °C, and can maintain long-term performance stability under simulated geological water conditions with salinity of 12,500 mg/L. For immersion corrosion by water or gasoline, the amount of corrosion is small and its fundamental performance remains largely unchanged. Through indoor simulation of a leak formation scenario, the hydrogel demonstrates commendable sealing pressure-bearing capacity. In terms of delaying fluid leakage, mixing the hydrogel with cement slurry at a ratio of 1:1 can delay the leakage rate of the cement slurry by a factor of 5.29.

4.
Gels ; 9(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37754416

RESUMEN

Lost circulation is a world-class problem, and the contradiction between plugging and unplugging in reservoirs is a problem that needs to be solved urgently. The traditional LCM is not suitable for reservoirs and the complex subsequent operations. Currently, a self-degrading plugging material is proposed. In this paper, a new self-degradation plugging material, CKS-DPPG, was prepared by AM, GG, nano silica, and PEGDA. The effects of reactant concentration, pH, mineralization, etc., on the swelling and degradation performance of CKS-DPPG were investigated. The plugging capacity was tested by fracture plugging equipment, and the mechanism of self-degradation was revealed. The results show that the CKS-DPPG reached a 50% degradation rate in 54 h and complete degradation in 106 h at 80 °C and pH = 8. Low temperatures, high mineralization, and weak alkaline conditions prolong the complete degradation time of CKS-DPPG, which facilitates subsequent operations. The simulation of the 3 mm opening fracture plugging experiment showed that the pressure-bearing capacity reached 6.85 MPa and that a 0.16 MPa pressure difference could unplug after degradation. The ester bond of PEGDA is hydrolyzed under high-temperature conditions, and the spatial three-dimensional structure of CKS-DPPG becomes linear. The CKS-DPPG can effectively reduce subsequent unplugging operations and lower production costs.

5.
Gels ; 8(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35621558

RESUMEN

Lost circulation in fractured formation is the first major technical problem that restricts improvements in the quality and efficiency of oil and gas drilling engineering. Improving the success rate of one-time lost circulation control is an urgent demand to ensure "safe, efficient and economic" drilling in oilfields all over the world. In view of the current situation, where drilling fluid loss occurs and the plugging mechanism of fractured formation is not perfect, this paper systematically summarizes the drilling fluid loss mechanism and model of fractured formation. The mechanism and the main influencing factors to improve the formation's pressure-bearing capacity, based on stress cage theory, fracture closure stress theory, fracture extension stress theory and chemical strengthening wellbore theory, are analyzed in detail. The properties and interaction mechanism of various types of lost circulation materials, such as bridging, high water loss, curable, liquid absorption and expansion and flexible gel, are introduced. The characteristics and distribution of drilling fluid loss in fractured formation are also clarified. Furthermore, it is proposed that lost circulation control technology for fractured formation should focus on the development of big data and intelligence, and adaptive and efficient intelligent lost circulation material should be continuously developed, which lays a theoretical foundation for improving the success rate of lost circulation control in fractured formation.

6.
Gels ; 9(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36661801

RESUMEN

With the development of oil exploration, the number of complex situations encountered in the drilling process is continuously increasing. During the operation of large displacement and horizontal wells, the safe density window of drilling fluid is narrow in complex formations and the lost circulation problem is becoming increasingly prominent. This can easily cause the drilling fluid to enter the formation from inside the well through lost circulation channels, which will prolong the drilling cycle, increase drilling costs, affect geological logging, and could cause a series of malignant accidents (such as blowout, sticking of a drilling tool, borehole collapse, and well abandoned). According to the severity, common lost circulation can be classified into three types: fractured lost circulation, karst cave lost circulation, and permeability lost circulation. Currently, researchers are developing different types of lost circulation materials (LCMs) for various lost circulation situations. Compared with conventional lost circulation control methods, the polymer gel lost circulation control technique applies a three-dimensional cage-like viscoelastic body formed via the crosslinking reaction of polymer gels. These materials have strong deformability and can enter fractures and holes through extrusion and deformation without being restricted by lost circulation channels. They then settle in the lost circulation formation and form a plugging layer through a curing reaction or swelling effect. Among the polymer gel LCMs, high-temperature resistant polymer gels can either be used alone or in combination with other LCMs, bringing the advantages of adjustable gelation time, strong lost circulation control ability, and strong filtration ability of the plugging slurry. Moreover, they are suitable for the lost circulation control of microporous leaky layer and have limited influence on the performance of drilling fluids. Therefore, the high-temperature resistant polymer gel lost circulation control technique is increasingly becoming a hot spot in the research of LCMs nowadays. This paper summarizes the research progress into high-temperature resistant functional gels for profile control and water shutoff, lost circulation prevention and control, and hydraulic fracturing. Furthermore, the current application status of high-temperature resistant gels and high-temperature resistant gel temporary plugging agents is demonstrated, followed by a detailed overview of the gel-breaking methods. Overall, this research lays the theoretical foundation for the application and promotion of high-temperature resistant gels.

7.
Materials (Basel) ; 11(10)2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340355

RESUMEN

In order to mitigate the loss circulation of oil-based drilling fluids (OBDFs), an oil-absorbent polymer (OAP) composed by methylmethacrylate (MMA), butyl acrylate (BA), and hexadecyl methacrylate (HMA) was synthesized by suspension polymerization and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electronic microscopy (SEM). The oil-absorptive capacity of OAP under different solvents was measured as the function of temperature and time. The effect of the OAP on the rheological and filtration properties of OBDFs was initially evaluated, and then the sealing property of OAP particles as lost circulation materials (LCMs) was examined by a high-temperature and high-pressure (HTHP) filtration test, a sand bed filtration test, a permeable plugging test, and a fracture sealing testing. The test results indicated that the addition of OAP had relatively little influence on the rheological properties of OBDF at content lower than 1.5 w/v % but increased the fluid viscosity remarkably at content higher than 3 w/v %. It could reduce the HTHP filtration and improve the sealing capacity of OBDF significantly. In the sealing treatment, after addition into the OBDF, the OAP particles could absorb oil accompanied with volume enlargement, which led to the increase of the fluid viscosity and slowing down of the fluid loss speed. The swelled and deformable OAP particles could be squeezed into the micro-fractures with self-adoption and seal the loss channel. More important, fluid loss was dramatically reduced when OAP particles were combined with other conventional LCMs by a synergistic effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA