Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 47952-47960, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189119

RESUMEN

Long-wavelength near-infrared (LWNIR) imaging technology has exciting application potential across various fields due to its ability of deeper penetration and unique properties related to its emission wavelength, when compared to short-wavelength near-infrared imaging. However, the limited availability of materials for LWNIR light sources, due to the lack of suitable host materials that constitute luminescence centers, has been a major challenge and technical obstacle in realizing such applications. Here, we developed MgIn2O4:Ni2+ phosphors with an antispinel structure and LWNIR luminescence properties through a sol-gel combustion method. Under excitation at 365 nm, its emission wavelength covers the range of 1000-2000 nm, with a peak emission at approximately 1520 nm, a full width at half-maximum of ∼340 nm, and an optimized photoluminescence quantum yield of ∼21.22%, when an optimal Ni2+ doping content of 1 mol % was used. Studies on the crystal structure of MgIn2O4 have shown that Ni2+ ions preferentially replace the lattice position occupied by Mg2+ ions in the [MgO6] octahedrons, which provides a crystal field microenvironment of weak strength to the Ni2+ luminescence centers and promotes their LWNIR emission with a large Stokes shift. A LWNIR pc-LED device was assembled using the optimized MgIn2O4:Ni2+ phosphor and a near-ultraviolet LED chip (@ 365 nm), and its potential applications, including NIR night vision imaging, nonvisual detection, and anticounterfeiting displays, were demonstrated. Our results show that the antispinel MgIn2O4:Ni2+ phosphor prepared by the sol-gel combustion method is a promising LWNIR luminescence material.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124767, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013304

RESUMEN

Hypochlorite (ClO-), a typical reactive oxygen species, plays an irreplaceable roles in various biological processes. In this work, long-wavelength emission carbon dots (LW-CDs) were fabricated through one-step hydrothermal method by using l-cysteine (cys) and neutral red (NR) as precursors for monitoring of hypochlorite and intracellular pH. Characterizations of as-prepared LW-CDs showed that they had excellent water solubility, high optical stability and sensitive response behavior. Fluorescence intensity of LW-CDs decayed in the presence of ClO- linearly from 10 to 162.5 µM (LOD = 1.021 µM) based on static quenching effect with ideal selectivity. Besides, LW-CDs revealed a pH responsive behavior in the pH range of 2.0 to 10.0, exhibited dual good linear relationships in the pH ranges of 4.2-5.8 and 5.8-7.4. The LW-CDs can also be utilized as imaging reagents in Hela living cells owing excellent biocompatibility and low cytotoxicity. These results demonstrated that the as-mentioned LW-CDs are expected to serve as excellent long wavelength emitting nanomaterials for fluorescence sensing and monitoring of cell fluctuations.


Asunto(s)
Carbono , Ácido Hipocloroso , Puntos Cuánticos , Ácido Hipocloroso/análisis , Humanos , Concentración de Iones de Hidrógeno , Puntos Cuánticos/química , Carbono/química , Células HeLa , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
3.
Angew Chem Int Ed Engl ; : e202408064, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853147

RESUMEN

Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (Φ 1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in Φ 1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.

4.
J Appl Crystallogr ; 57(Pt 3): 649-658, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846772

RESUMEN

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Šdata, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.

5.
Nano Lett ; 24(22): 6617-6624, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38717095

RESUMEN

The mapping of long-wavelength phonons is important to understand and manipulate the thermal transport in multilayered structures, but it remains a long-standing challenge due to the collective behaviors of phonons. In this study, an experimental demonstration of mapping the long-wavelength phonons in an alloyed Al0.1Ga0.9As/Al0.9Ga0.1As superlattice system is reported. Multiple strategies to filter out the short- to mid-wavelength phonons are used. The phonon mean-free-path-dependent thermal transport properties directly demonstrate both the suppression effect of the ErAs nanoislands and the contribution of long-wavelength phonons. The contribution from phonons with mean free path longer than 1 µm is clearly demonstrated. A model based on the Boltzmann transport equation is proposed to calculate and describe the thermal transport properties, which depicts a clear physical picture of the transport mechanisms. This method can be extended to map different wavelength phonons and become a universal strategy to explore their thermal transport in various application scenarios.

6.
J Hazard Mater ; 470: 134272, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613953

RESUMEN

As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.


Asunto(s)
Carbono , Glycine max , Hojas de la Planta , Puntos Cuánticos , Hojas de la Planta/química , Glycine max/química , Carbono/química , Puntos Cuánticos/química , Microplásticos/toxicidad , Tamaño de la Partícula , Raíces de Plantas , Plásticos/química , Fluorescencia
7.
Adv Healthc Mater ; 13(19): e2400791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588220

RESUMEN

Dyes with extended conjugate structures are the focus of extensive design and synthesis efforts, aiming to confer unique and improved optical and electronic properties. Such advancements render these dyes applicable across a wide spectrum of uses, ranging from second-window near-infrared (NIR-II) bioimaging to organic photovoltaics. Nevertheless, the inherent benefits of long conjugation are often accompanied by persistent challenges like aggregation, fluorescence quenching, absorption blueshift, and low stability and poor water solubility. Herein, a unique structural design strategy termed "homo-dyad with outer hydration layer" is introduced to address these inherent problems, tailored for the development of imaging probes exhibiting long absorption/emission wavelengths. This approach involves bringing two heptamethine cyanines together through a flexible linker, forming a homo-dyad structure, while strategically attaching four polyethylene glycol (PEG9) chains to the terminal heterocycles. This approach imparts excellent water solubility, biocompatibility, and enhanced chemical, photo-, and spectral stability for the dyes. Utilizing this strategy, a biomarker-activatable probe (HD-FL-4PEG9-N) for NIR-II fluorescent and 3D multispectral optoacoustic tomography imaging is developed, and its effectiveness in disease visualization. It can not only serve as an injectable probe for acute kidney injury imaging due to its high water solubility, but also a sprayable probe for imaging bacterial-infected wounds.


Asunto(s)
Colorantes Fluorescentes , Solubilidad , Agua , Colorantes Fluorescentes/química , Agua/química , Animales , Humanos , Polietilenglicoles/química , Ratones , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124235, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38599022

RESUMEN

In this work, an extraordinary solid red emissive phosphor was prepared based on red-emitting carbon dots (R-CDs). The synthesis was conducted under an in-situ strategy, with assistance of zeolitic imidazolate frameworks. The obtained phosphor possesses a stronger red emission located at 630 nm in solid state, with CIE coordinate of (0.63, 0.35) and quantum yield of âˆ¼ 45 %. As a consequence, not only aggregation-induced fluorescence quenching of R-CDs is avoided in solid state, but also an enhanced emission with high quantum yield is presented. Fluorescence properties were further explored in detail. The emission is found to be responsive to temperature and applied pressure. Based on the excellent emissive performance, the material has great potentials in anti-counterfeiting, latent fingerprint imaging, and temperature/pressure-sensing. This work provides a facile and promising way of preparing solid carbon-based phosphors for special applications.

9.
Biosens Bioelectron ; 254: 116193, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479342

RESUMEN

Herein, a new electrochemiluminescence (ECL) biosensor was constructed with highly efficient polymerized carbon dots (PCDs) as ECL emitter and the improved localized catalytic hairpin assembly (L-CHA) as signal amplifier for ultrasensitive detection of microRNA-222 (miRNA-222). Impressively, compared to the traditional carbon dots with inefficient blue region ECL emission, PCDs with N, O co-dope and large conjugated π-system showed high electrical conductivity, narrow band gap and strong radiative transition, which could exhibit high ECL efficiency to improve the sensitivity of detection and long wavelength ECL emission to achieve deep tissue penetration for reducing biological damage. Furthermore, the trace target miRNA-222 could be efficiently converted into large amounts of output DNA labelled with the quencher dopamine (S-DA) through the L-CHA reaction to significantly enhance the target amplification efficiency for further improving the sensitivity of detection. Thus, the ECL biosensor could achieve the ultrasensitive detection of miRNA-222 from 100 aM to 100 pM with the detection limit of 76 aM. Therefore, this work proposed a novel CDs with high ECL efficiency and long wavelength ECL emission, which not only was used to build an ultrasensitive biosensor for biomolecules detection in clinical diagnosis, but also served as a potential emitter for ECL bioimaging.


Asunto(s)
Técnicas Biosensibles , MicroARNs , MicroARNs/genética , Carbono , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
10.
J Hazard Mater ; 469: 133968, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452682

RESUMEN

Pb2+ is a heavy metal ion pollutant that poses a serious threat to human health and ecosystems. The conventional methods for detecting Pb2+ have several limitations. In this study, we introduce a novel fluorescent probe that enables the detection of Pb2+ in the near-infrared region, free from interference from other common ions. A unique characteristic of this probe is its ability to rapidly and accurately identify Pb2+ through ratiometric measurements accompanied by a large Stokes shift of 201 nm. The limit of detection achieved by probe was remarkably low, surpassing the standards set by the World Health Organization, and outperforming previously reported probes. To the best of our knowledge, this is the first organic small-molecule fluorescent probe with both near-infrared emission and ratiometric properties for the detection of Pb2+. We present a triple-mode sensing platform constructed using a probe that allows for the sensitive and selective recognition of Pb2+ in common food items. Furthermore, we successfully conducted high-quality fluorescence imaging of Pb2+ in various samples from common edible plants, HeLa cells, Caenorhabditis elegans, and mice. Importantly, the probe-Pb2+ complex exhibited tumour-targeting capabilities. Overall, this study presents a novel approach for the development of fluorescent probes for Pb2+ detection.


Asunto(s)
Colorantes Fluorescentes , Plomo , Humanos , Animales , Ratones , Células HeLa , Ecosistema
11.
Ecol Evol ; 14(2): e10899, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304263

RESUMEN

Red sensitivity is the exception rather than the norm in most animal groups. Among species with red sensitivity, there is substantial variation in the peak wavelength sensitivity (λmax) of the long wavelength sensitive (LWS) photoreceptor. It is unclear whether this variation can be explained by visual tuning to the light environment or to visual tasks such as signalling or foraging. Here, we examine long wavelength sensitivity across a broad range of taxa showing diversity in LWS photoreceptor λmax: insects, crustaceans, arachnids, amphibians, reptiles, fish, sharks and rays. We collated a list of 161 species with physiological evidence for a photoreceptor sensitive to red wavelengths (i.e. λmax ≥ 550 nm) and for each species documented abiotic and biotic factors that may be associated with peak sensitivity of the LWS photoreceptor. We found evidence supporting visual tuning to the light environment: terrestrial species had longer λmax than aquatic species, and of these, species from turbid shallow waters had longer λmax than those from clear or deep waters. Of the terrestrial species, diurnal species had longer λmax than nocturnal species, but we did not detect any differences across terrestrial habitats (closed, intermediate or open). We found no association with proxies for visual tasks such as having red morphological features or utilising flowers or coral reefs. These results support the emerging consensus that, in general, visual systems are broadly adapted to the lighting environment and diverse visual tasks. Links between visual systems and specific visual tasks are commonly reported, but these likely vary among species and do not lead to general patterns across species.

12.
Nanotechnology ; 35(21)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38382119

RESUMEN

Here we report on an experimental and theoretical investigation of the long-wavelength infrared (LWIR) photoresponse of photodetectors based on arrays of three million InP nanowires with axially embedded InAsP quantum discs. An ultra-thin top indium tin oxide contact combined with a novel photogating mechanism facilitates an improved LWIR normal incidence sensitivity in contrast to traditional planar quantum well photodetectors. The electronic structure of the quantum discs, including strain and defect-induced photogating effects, and optical transition matrix elements were calculated by an 8-bandk·psimulation along with solving drift-diffusion equations to unravel the physics behind the generation of narrow linewidth intersubband signals observed from the quantum discs.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123863, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38241934

RESUMEN

Crystal violet (CV) is one of the main components of common fungicides in daily life, which has inhibitory effect on gram-positive bacteria. However, CV remains in the environment for a long time and have potential risk of disease. Therefore, it is necessary to develop effective methods for detecting CV. Low-temperature carbon dots (LT-CDs) are studied to provide a new idea for the development of CDs green preparation technology from the perspective of low energy consumption. In this experiment, LT-CDs with long-wavelength emission were prepared based on the oxidation, cross-linking polymerization and Schiff base reaction using o-phenylenediamine and hydroquinone as carbon source at low temperature, and were characterized by various techniques. It was found that LT-CDs could be used as a fluorescent probe for quantitative detection of CV based on the inner filter effect, and the practicability of the method was verified by real samples.

14.
Chemistry ; 30(15): e202303458, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38221142

RESUMEN

The recent discovery of blue fluorophores with high quantum yields based on pyridone structures inspired the development of new low-molecular-weight fluorophores with bright emissions at tunable wavelengths, which are highly attractive for various applications. In this study, we propose a rational design strategy for 2-pyridone-based fluorophores with bright emissions at long wavelengths. With a detailed understanding of the positional substitution effects on each carbon atom of the 2-pyridone core, we developed a bright blue fluorophore (λabs =377 nm; λem =433 nm; ϵ=13,200 M-1 cm-1 ; ϕF =88 %) through C3 -aryl and C4 -ester substitutions followed by cyclization. Furthermore, by applying the intramolecular charge transfer (ICT) principle, we invented a bright green fluorophore through C3 - and C4 -diester and C6 -aryl substitutions. The ICT fluorophore based on the pyridone structure shows large molar absorptivity (ϵ=20,100 M-1 cm-1 ), longer emission wavelength (λem =539 nm), high emission quantum yield (ϕF =74 %), and large Stokes shift (Δv=5720 cm-1 ), which are comparable to those of practical fluorescent probes.

15.
J Evol Biol ; 37(2): 212-224, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38262627

RESUMEN

Visual adaptations can stem from variations in amino acid composition, chromophore utilization, and differential opsin gene expression levels, enabling individuals to adjust their light sensitivity to environmental lighting conditions. In stable environments, adaptations often involve amino acid substitutions, whereas in unstable conditions, differential gene expression may be a more relevant mechanism. Amazon forest streams present diverse underwater lighting conditions and experience short-term water colour fluctuations. In these environments, it is less likely for genetic and amino acid sequences to undergo modifications that tailor opsin proteins to the prevailing lighting conditions, particularly in species having several copies of the same gene. The sailfin tetra, Crenuchus spilurus, inhabits black and clear water Amazon forest streams. The long-wavelength sensitivity (LWS) is an important component for foraging and courtship. Here, we investigated LWS opsin genes in the sailfin tetra. Three copies of LWS1 and two copies of LWS2 genes were found. The maximum absorbance wavelength (λmax) estimated from the amino acid sequences of LWS1 genes exhibited variation among the different copies. In contrast, the copies of LWS2 genes showed identical expected λmax values. Although the amino acid positions affecting λmax varied among LWS genes, they remained consistent among populations living in different water colours. The relative expression levels of LWS genes differed between gene copies. While not formally tested, our results suggest that in fluctuating environments, visual adaptations may primarily stem from alterations in gene expression profiles and/or chromophore usage rather than precise genetic tuning of protein light sensitivity to environmental lighting conditions.


Asunto(s)
Opsinas , Fotofobia , Animales , Opsinas/genética , Opsinas/metabolismo , Ríos , Peces , Bosques , Aminoácidos/genética , Agua , Filogenia
16.
J Theor Biol ; 579: 111702, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38096977

RESUMEN

In this paper, we study the nonlinear dynamics of the MARCKS protein between cytosol and cytoplasmic membrane through the modulational instability phenomenon. The reaction-diffusion generic model used here is firstly transformed into a cubic complex Ginzburg-Landau equation. Then, modulational instability (MI) is carried out in order to derive the MI criteria. We find the domains of some parameter space where nonlinear patterns are expected in the model. The analytical results on the MI growth rate predict that phosphorylation and binding rates affect MARCKS dynamics in opposite way: while the phosphorylation rate tends to support highly localized structures of MARCKS, the binding rate in turn tends to slow down such features. On the other hand, self-diffusion process always amplifies the MI phenomenon. These predictions are confirmed by numerical simulations. As a result, the cyclic transport of MARCKS protein from membrane to cytosol may be done by means of multisolitons-like patterns.


Asunto(s)
Dinámicas no Lineales , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Membrana Celular , Difusión , Fosforilación
17.
Materials (Basel) ; 16(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38068117

RESUMEN

In recent years, many parts of the world have researched the transition to renewable energy, reducing energy consumption and moving away from fossil fuels. Among the studies to reduce energy consumption, passive radiative cooling can reduce the energy used for building cooling, and to improve this, the optical properties of atmospheric window emissivity and solar reflectance must be increased. In this study, hollow yttrium oxide (H-Y2O3) was fabricated using melamine formaldehyde (MF) as a sacrificial template to improve the optical properties of passive radiative cooling. We then used finite-difference time-domain (FDTD) simulations to predict the optical properties of the fabricated particles. This study compares the properties of MF@Y(OH)CO3 and H-Y2O3 particles derived from the same process. H-Y2O3 was found to have a solar reflectance of 70.73% and an atmospheric window emissivity of 86.24%, and the field tests revealed that the temperature of MF@Y(OH)CO3 was relatively low during the daytime. At night, the temperature of the H-Y2O3 film was found to be 2.6 °C lower than the ambient temperature of 28.8 °C. The optical properties and actual cooling capabilities of the particles at each stage of manufacturing the hollow particles were confirmed and the cooling capabilities were quantified.

18.
Proc Natl Acad Sci U S A ; 120(48): e2312866120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988461

RESUMEN

All phase transitions can be categorized into two different types: continuous and discontinuous phase transitions. Discontinuous phase transitions are normally accompanied with significant structural changes, and nearly all of them have the kinetic pathway of nucleation and growth, if the system does not suffer from glassy dynamics. Here, in a system of barrier-controlled reactive particles, we find that the discontinuous freezing transition of a nonequilibrium hyperuniform fluid into an absorbing state does not have the kinetic pathway of nucleation and growth, and the transition is triggered by long-wavelength fluctuations. The transition rate decreases with increasing the system size, which suggests that the metastable hyperuniform fluid could be kinetically stable in an infinitely large system. This challenges the common understanding of metastability in discontinuous phase transitions. Moreover, we find that the "metastable yet kinetically stable" hyperuniform fluid features a scaling in the structure factor [Formula: see text] in 2D, which is the third dynamic hyperuniform state in addition to the critical hyperuniform state with [Formula: see text] and the nonequilibrium hyperuniform fluid with [Formula: see text].

19.
Angew Chem Int Ed Engl ; 62(49): e202311883, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37860881

RESUMEN

High-resolution in vivo optical multiplexing in second near-infrared window (NIR-II, 1000-1700 nm) is vital to biomedical research. Presently, limited by bio-tissue scattering, only luminescent probes located at NIR-IIb (1500-1700 nm) window can provide high-resolution in vivo multiplexed imaging. However, the number of available luminescent probes in this narrow NIR-IIb region is limited, which hampers the available multiplexed channels of in vivo imaging. To overcome the above challenges, through theoretical simulation we expanded the conventional NIR-IIb window to NIR-II long-wavelength (NIR-II-L, 1500-1900 nm) window on the basis of photon-scattering and water-absorption. We developed a series of novel lanthanide luminescent nanoprobes with emission wavelengths from 1852 nm to 2842 nm. NIR-II-L nanoprobes enabled high-resolution in vivo dynamic multiplexed imaging on blood vessels and intestines, and provided multi-channels imaging on lymph tubes, tumors and intestines. The proposed NIR-II-L probes without mutual interference are powerful tools for high-contrast in vivo multiplexed detection, which holds promise for revealing physiological process in living body.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Neoplasias , Humanos , Elementos de la Serie de los Lantanoides/química , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos , Nanopartículas/química
20.
ACS Appl Mater Interfaces ; 15(33): 39472-39479, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552864

RESUMEN

Transmission near-infrared (NIR) imaging technology has great potential for biomedical imaging because of its lower water absorption coefficient and highly reduced photon scattering effect in biological tissues compared to visible light. The extent of biological tissue photon scattering is inversely proportional to wavelength; therefore, in principle, imaging with long-wavelength NIR helps improve the resolution of the optical image, but deep tissue high-resolution luminescence imaging is still very challenging technically. Here, we report the discovery of a Ba2MgWO6:Ni2+ double perovskite phosphor that emits broadband long-wavelength NIR (1200-2000 nm) under 365 nm near-ultraviolet (UV) excitation, with a full width at half-maximum of 255 nm. The luminescence quantum efficiency of the phosphor with optimized composition reached 16.67%. The analysis of the crystal structure of Ba2MgWO6:Ni2+ suggests that Ni2+ ions preferentially occupy the W6+ site in octahedrons with a weak crystal field, which leads to a large Stokes shift. An as-prepared long-wavelength NIR pc-LED device was built by packaging an optimized phosphor with a low-power near-UV-LED chip, which was tested to generate clear imaging of venous vessels in human fingers. These unique properties of the Ba2MgWO6:Ni2+ double perovskite phosphor makes it a promising application in the field of imaging sources for body tissue..


Asunto(s)
Níquel , Óxidos , Humanos , Agua , Compuestos de Calcio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA