Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Orthop Translat ; 39: 34-42, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36636358

RESUMEN

Background: Osteosarcoma (OS) is the most common primary malignancy in bone tissues, and effective therapeutics remain absent in clinical practice. Traditional Chinese medicines (TCM) have been used for thousands of years, which provide great insights into OS management. Gallic acid (GA) is a natural phenolic acid enriched in various foods and herbs. Several pharmacological activities of GA such as anti-oxidation and anti-inflammation have been well-established. However, its biological function in OS remains not fully understood. Methods: The potential anti-cancer properties of GA were evaluated in 143 â€‹B, U2OS and MG63 â€‹cells. Its effects on cell growth, cell cycle, apoptosis and migration were examined in these OS cells. The lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR, luciferase activity and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using an orthotopic mouse model. Results: In the present study, GA was found to suppress the tumor growth in vitro via inducing cell cycle arrest and apoptosis in OS cells, and inhibit the invasion and metastasis as well. Using the orthotopic animal model, GA was also found to suppress tumorigenesis in vivo. Long noncoding RNA (lncRNA) H19 was demonstrated to be down-regulated by GA, and thus disrupted the canonical Wnt/ß-catenin signaling in OS cells. Furthermore, the ectopic expression of H19 rescued the GA-induced suppressive effects on tumor growth and metastasis, and partially reversed the inactivation of Wnt/ß-catenin signaling. Conclusions: Taken together, our results indicated that GA inhibited tumor growth through an H19-mediated Wnt/ß-catenin signaling regulatory axis in OS cells. The translational potential of this article: The information gained from this study provides a novel underlying mechanism of GA mediated anti-OS activity, suggesting that GA may be a promising drug candidate for OS patients.

2.
J Adv Res ; 37: 169-184, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35499057

RESUMEN

Introduction: The prognosis for cervical cancer (CC) patients with lymph node metastasis (LNM) is extremely poor. Lipid droplets (LDs) have a pivotal role in promoting tumor metastasis. The crosstalk mechanism between LDs and LNM modulated in CC remains largely unknown. Objectives: This study aimed to construct a miRNA-dependent progonostic model for CC patients and investigate whether miR-532-5p has a biological impact on LNM by regualting LDs accumulation. Methods: LASSO-Cox regression was applied to establish a prognostic prediction model. miR-532-5p had the lowest P-value in RNA expression (P < 0.001) and prognostic prediction (P < 0.0001) and was selected for further study. The functional role of the prognostic miR-532-5p-correlated competing endogenous RNA (ceRNA) network was investigated to clarify the crosstalk between LDs and LNM. The underlying mechanism was determined using site-directed mutagenesis, dual luciferase reporter assays, RNA immunoprecipitation assays, and rescue experiments. A xenograft LNM model was established to evaluate the effect of miR-532-5p and orlistat combination therapy on tumor growth and LNM. Results: A novel 5-miRNAs prognostic signature was constructed to better predict the prognosis of CC patient. Further study demonstrated that miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating LDs accumulation. Interestingly, we also found that LDs accumulation promoted cell metastasis in vitro. Mechanistically, we demonstrated a miR-532-5p-correlated ceRNA network in which LINC01410 was bound directly to miR-532-5p and effectively functioned as miR-532-5p sponge to disinhibit its target gene-fatty acid synthase (FASN). Combined therapy with miR-532-5p and FASN inhibitor-orlistat further inhibited tumor growth and LNM in vivo. Conclusion: Our findings highlight a LD accumulation-dependent mechanism of miR-532-5p-modulated LNM and support treatment with miR-532-5p/orlistat as novel strategy for treating patients with LNM in CC.


Asunto(s)
MicroARNs , Neoplasias del Cuello Uterino , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Gotas Lipídicas/metabolismo , Metástasis Linfática , MicroARNs/genética , MicroARNs/metabolismo , Orlistat , Pronóstico , Neoplasias del Cuello Uterino/genética
3.
Regen Ther ; 20: 41-50, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35402663

RESUMEN

Introduction: The functional roles and mechanism of the XIST in osteoarthritis and the chondrogenic differentiation of BMSCs were clarified. Methods: The expression levels of XIST, TAF15, FUT1 and YY1 were detected through quantitative RT-PCR. The protein expression of Sox9, ACAN, COL2A1 and FUT1 were detected by western blot and immunohistochemistry. The damage of cartilage tissue was detected by HE staining, and Safranin O-fast green. Alcian-Blue and Alizarin red S staining were performed to evaluate BMSCs chondrogenic differentiation. The relationship between XIST and TAF15, XIST and TAF15 were analyzed by RNA immunoprecipitation assay. Luciferase reporter assays and chromatin immunoprecipitation were performed to detect the interaction relationship between XIST and YY1. In addition, osteoarthritis mice were built to assess the function of XIST in vivo. Results: The levels of XIST, TAF15 and FUT1 were upregulated in cartilage tissues from osteoarthritis patient. The level of XIST was decreased in BMSCs during chondrogenic differentiation. XIST overexpression inhibited the chondrogenic differentiation of BMSCs. Moreover, silencing of FUT1 reversed the effects of XIST overexpression on BMSCs chondrogenic differentiation. Mechanistically, in BMSCs, YY1 induced the expression of XIST in BMSCs, and XIST regulated FUT1 mRNA stability through targeting TAF15. Furthermore, silencing of XIST alleviated the symptoms of cartilage injury in OA mice. Conclusion: Taken together, these results suggested that YY1 induced XIST was closely related to the chondrogenic differentiation of BMSCs and the progression of osteoarthritis by TAF15/FUT1 axis, and may be a new OA therapeutic target.

4.
J Adv Res ; 26: 123-135, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33133688

RESUMEN

INTRODUCTION: In atherosclerotic lesions, extensive inflammation of the vessel wall contributes to plaque instability. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes in atherosclerosis. OBJECTIVES: Here, we aim to identify the functional role and regulatory mechanisms of lncRNA hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) in atherosclerotic inflammation. METHODS: An atherosclerotic mouse model was induced in ApoE-/- mice by high fat diet (HFD). Endothelial cells (ECs), human aortic smooth muscle cells (SMCs) or human coronary artery endothelial cells (HCAECs) were exposed to ox-LDL to develop the in vitro model. The effects of lncRNA HIF1A-AS2 on inflammation were evaluated by determining levels of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) and levels of adhesion molecules vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and macrophage cationic peptide 1 (MCP-1). RESULTS: It was established that lncRNA HIF1A-AS2 and ATF2 were highly expressed in atherosclerotic ApoE-/- mice. Downregulating lncRNA HIF1A-AS2 in ox-LDL-exposed ECs, SMCs and HCAECs inhibited inflammation by reducing levels of pro-inflammatory factors and adhesion molecules. LncRNA HIF1A-AS2 bound to the transcription factor USF1 to elevate ATF2 expression. USF1 overexpression counteracted the suppressive effect of lncRNA HIF1A-AS2 silencing on ox-LDL-induced inflammation. Knockdown of lncRNA HIF1A-AS2 or ATF2 could also attenuate inflammation in atherosclerotic mice. Collectively, the present study demonstrates that downregulation of lncRNA HIF1A-AS2 represses the binding of USF1 to the ATF2 promoter region and then inhibits ATF2 expression, thereby suppressing atherosclerotic inflammation. CONCLUSION: This study suggests lncRNA HIF1A-AS2 as an promising therapeutic target for atherosclerosis.

5.
Anim Biotechnol ; 30(2): 159-165, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29631473

RESUMEN

Adipocyte differentiation-associated long noncoding RNA (ADNCR) is a newly discovered lncRNA. It plays function by targeting miR-204 to significantly regulates the expression of the target SIRT1 gene in preadipocytes both at the level of mRNA and protein, thereby inhibiting adipogenesis. The tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) strategy is fast and accuracy at a negligible cost for SNP genotyping in large samples. In the study, a novel SNP g.1263T>A in intron 1 of bovine ADNCR gene was found. Herein, the T-ARMS-PCR assay was applied to detect the genotypes of the novel SNP of bovine ADNCR gene in 1017 individuals from seven cattle breeds and validated the accuracy by DNA sequencing assay of ninety animals representing three different genotypes. The concordance between two different methods was 100%. The association analysis indicated that this locus was significantly associated with the body weight (P = 0.010), chest girth (P = 0.014) and rump length (P = 0.038) in Jinnan cattle, hucklebone width (P = 0.032) in Qinchuan cattle, the cannon circumference (P = 0.019) in Jinjiang cattle, respectively. These novel findings may be used for marker-assisted selection (MAS) and contribute to the performance of beef cattle in the future.


Asunto(s)
Bovinos/genética , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética , Adipocitos/fisiología , Animales , Peso Corporal/genética , Cruzamiento , Bovinos/crecimiento & desarrollo , Diferenciación Celular/genética , Femenino , Estudios de Asociación Genética/veterinaria , Sitios Genéticos/genética , Marcadores Genéticos/genética , Genotipo , Masculino , Reacción en Cadena de la Polimerasa/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA