Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2318860121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074280

RESUMEN

Elevated temperatures persisted for an anomalously protracted interval following pulsed volcanic carbon release associated with the end-Permian mass extinction, deviating from the expected timescale of climate recovery following a carbon injection event. Here, we present evidence for enhanced reverse weathering-a CO2 source-following the end-Permian mass extinction based on the lithium isotopic composition of marine shales and cherts. We find that the average lithium isotopic composition of Lower Triassic marine shales is significantly elevated relative to that of all other previously measured Phanerozoic marine shales. Notably, the record generated here conflicts with carbonate-based interpretations of the lithium isotopic composition of Early Triassic seawater, forcing a re-evaluation of the existing framework used to interpret lithium isotopes in sedimentary archives. Using a stochastic forward lithium cycle model, we demonstrate that elevated reverse weathering is required to reproduce the lithium isotopic values and trends observed in Lower Triassic marine shales and cherts. Collectively, this work provides direct geochemical evidence for enhanced reverse weathering in the aftermath of Earth's most severe mass extinction.

2.
Front Physiol ; 15: 1354091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655027

RESUMEN

The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.

3.
Sci Total Environ ; 896: 165165, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37394077

RESUMEN

Constraining the multiple climatic, lithological, topographic, and geochemical variables controlling isotope variations in large rivers is often challenging with standard statistical methods. Machine learning (ML) is an efficient method for analyzing multidimensional datasets, resolving correlated processes, and exploring relationships between variables simultaneously. We tested four ML algorithms to elucidate the controls of riverine δ7Li variations across the Yukon River Basin (YRB). We compiled (n = 102) and analyzed new samples (n = 21), producing a dataset of 123 river water samples collected across the basin during the summer including δ7Li and extracted environmental, climatological, and geological characteristics of the drainage area for each sample from open-access geospatial databases. The ML models were trained, tuned, and tested under multiple scenarios to avoid issues such as overfitting. Random Forests (RF) performed best at predicting δ7Li across the basin, with the median model explaining 62 % of the variance. The most important variables controlling δ7Li across the basin are elevation, lithology, and past glacial coverage, which ultimately influence weathering congruence. Riverine δ7Li has a negative dependence on elevation. This reflects congruent weathering in kinetically-limited mountain zones with short residence times. The consistent ranking of lithology, specifically igneous and metamorphic rock cover, as a top feature controlling riverine δ7Li modeled by the RFs is unexpected. Further study is required to validate this finding. Rivers draining areas that were extensively covered during the last glacial maximum tend to have lower δ7Li due to immature weathering profiles resulting in short residence times, less secondary mineral formation and therefore more congruent weathering. We demonstrate that ML provides a fast, simple, visualizable, and interpretable approach for disentangling key controls of isotope variations in river water. We assert that ML should become a routine tool, and present a framework for applying ML to analyze spatial metal isotope data at the catchment scale.

4.
Materials (Basel) ; 16(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241444

RESUMEN

In terms of isotopic technologies, it is essential to be able to produce materials with an enriched isotopic abundance (i.e., a compound isotopic labelled with 2H, 13C, 6Li, 18O or 37Cl), which is one that differs from natural abundance. The isotopic-labelled compounds can be used to study different natural processes (like compounds labelled with 2H, 13C, or 18O), or they can be used to produce other isotopes as in the case of 6Li, which can be used to produce 3H, or to produce LiH that acts like a protection shield against fast neutrons. At the same time, 7Li isotope can be used as a pH controller in nuclear reactors. The COLEX process, which is currently the only technology available to produce 6Li at industrial scale, has environmental drawbacks due to generation of Hg waste and vapours. Therefore, there is a need for new eco-friendly technologies for separation of 6Li. The separation factor of 6Li/7Li with chemical extraction methods in two liquid phases using crown ethers is comparable to that of COLEX method, but has the disadvantages of low distribution coefficient of Li and the loss of crown ethers during the extraction. Electrochemical separation of lithium isotopes through the difference in migration rates between 6Li and 7Li is one of the green and promising alternatives for the separation of lithium isotopes, but this methodology requires complicated experimental setup and optimisation. Displacement chromatography methods like ion exchange in different experimental configurations have been also applied to enrich 6Li with promising results. Besides separation methods, there is also a need for development of new analysis methods (ICP-MS, MC-ICP-MS, TIMS) for reliable determination of Li isotope ratios upon enrichment. Considering all the above-mentioned facts, this paper will try to emphasize the current trends in separation techniques of lithium isotopes by exposing all the chemical separation and spectrometric analysis methods, and highlighting their advantages and disadvantages.

5.
Biochem Biophys Rep ; 34: 101461, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37063814

RESUMEN

Lithium has been used as a treatment for bipolar disorder for over half a century, but there has thus far been no clinical differentiation made between the two naturally occurring stable isotopes (6Li and 7Li). While the natural lithium salts commonly used in treatments are composed of a mixture of these two stable isotopes (approximately 7.59% 6Li and 92.41% 7Li), some preliminary research indicates the above two stable isotopes of lithium may have differential effects on rat behaviour and neurophysiology. Here, we evaluate whether lithium isotopes may have distinct effects on HT22 neuronal cell viability, GSK-3-ß phosphorylation in HT22 cells, and GSK-3-ß kinase activity. We report no significant difference in lithium isotope toxicity on HT22 cells, nor in GSK-3-ß phosphorylation, nor in GSK-3-ß kinase activity between the two isotopes of lithium.

6.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770600

RESUMEN

The extraction of lithium from aqueous solutions of LiNTf2 and LiCl salts using benzo-15-crown-5 ether (B15C5) as an extractant in [C8mim][NTf2] ionic liquid was studied. The transition of the extractant into the aqueous phase and the distribution of Cl- ions during lithium extraction from LiCl solutions were determined. LiNTf2 complexes with B15C5 with different LiNTf2:B15C5 ratios were isolated for the first time and characterized via X-ray diffraction and IR spectroscopy. Differences in the extraction process of LiCl and LiNTf2 were determined via an infrared spectroscopic study of the extraction systems.

7.
Sci Total Environ ; 851(Pt 1): 158138, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987219

RESUMEN

Our current understanding of controls on δ7Li variability and fractionation mechanisms is limited, complicating the interpretation of chemical weathering. The role of clay adsorption in Li isotope fractionation during chemical weathering has been confirmed. However, clay assemblage and fluid chemistry are not simple and often variable in weathering settings, potentially modulating Li isotope fractionation on Earth's surface. Here, this research investigated the patterns and processes of Li isotope fractionation during adsorption on kaolinite and smectite with fluid chemistry of 0.001 M NaCl, 0.5 M NaCl, and 0.001 M Na2HPO4. Specifically, the time-dependent experiments with the reaction period up to 15 days revealed that the steady state can be achieved within one day under neutral conditions. The concentration-dependent (initial Li concentration of 2 to 1000 µM) experiments confirmed the accumulation of Li+ in smectite interlayers and adsorption of Li+ only at the external surfaces of kaolinite. Using 0.5 M NaCl solution and the desorption experiments, we hypothesize that outer-sphere Li may exist in the interlayer sites, which can be replaced by excess Na+. In comparison, inner-sphere Li+ (unexchangeable) potentially dominates at the edge surface of clays. The presence of Na2HPO4 increases the binding capacity for Li+ adsorption, in particular for kaolinite. In all cases, 6Li is enriched on clay surfaces and interlayer spaces, consistent with field observations. Fluid chemistry may affect the degree of clay Li adsorption but exerted negligible impacts on isotope fractionation. For kaolinite, a wide variation (up to 30 ‰) in isotopic fractionation between adsorbed and aqueous Li (Δ7Liaq-ad) exists, conforming to a kinetic fractionation mechanism with a constant fractionation factor αad-aq of ~0.992. By contrast, the isotopic fractionation between Li adsorbed on smectite and Li+ left in solutions keeps constant (Δ7Liaq-ad of ~5 ‰), likely following an equilibrium isotope fractionation law with an αad-aq of ~0.995.


Asunto(s)
Caolín , Litio , Adsorción , Arcilla , Isótopos , Silicatos , Cloruro de Sodio
8.
Sci Total Environ ; 835: 155470, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35472352

RESUMEN

Northern Chile, NW Argentina, and SW Bolivia, ("the lithium triangle"), represent a world class reservoir of lithium, but this extraordinary enrichment is still controversial, and different processes have been invoked over the years, including, geothermal waters associated with active volcanism, leaching of soluble salts from volcanic rocks and leaching of lithium-rich clays. The Salar de Atacama (SDA) represents one of the richest reservoirs of Li in northern Chile and has been extensively studied during the past years. Most of the studies have been focused in the southern and southeastern portions, where the highest lithium concentrations have been reported. However, a comprehensive model of water recharge at SDA is still imprecise. We used a combination of isotopic methods, including δ7Li, δ11B and 87Sr/86Sr ratios, with their chemical composition of a set of water samples from salt lakes, geothermal manifestations, groundwaters and surficial diluted waters (rivers and streams with low salinity). This study explores the hydrogeochemical processes controlling the water composition and solute distribution of the SDA. Our data confirm that weathering of the ignimbrites constitutes one of the most important processes in relation of solute origin in the region, where deep water-rock interactions would operate at high temperature, enhancing leaching of Li and other solutes. We determine that groundwater flow entering the SDA has undergone pre-enrichment processes (e.g., leak from Altiplano salt lakes; evaporite dissolution, among others) associated with salt inputs in the Western Cordillera. Our results provide a step forward to a comprehensive understanding of the processes that govern brine formation and lithium enrichment in a hyperarid environment, contributing to a sustainable exploration and exploitation of lithium in these environments.


Asunto(s)
Agua Subterránea , Agua , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Isótopos , Litio
9.
J Hazard Mater ; 428: 128214, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35042164

RESUMEN

Boron carbide control rods remain in the fuel debris of the damaged reactors in the Fukushima Daiichi Nuclear Power Plant, potentially preventing re-criticality; however, the state and stability of the control rods remain unknown. Sensitive high-resolution ion microprobe analyses have revealed B-Li isotopic signatures in radioactive Cs-rich microparticles (CsMPs) that formed by volatilization and condensation of Si-oxides during the meltdowns. The CsMPs contain 1518-6733 mg kg-1 of 10+11B and 11.99-1213 mg kg-1 of 7Li. The 11B/10B (4.15-4.21) and 7Li/6Li (213-406) isotopic ratios are greater than natural abundances (~4.05 and ~12.5, respectively), indicating that 10B(n,α)7Li reactions occurred in B4C prior to the meltdowns. The total amount of B released with CsMPs was estimated to be 0.024-62 g, suggesting that essentially all B remains in reactor Units 2 and/or 3 and is enough to prevent re-criticality; however, the heterogeneous distribution of B needs to be considered during decommissioning.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Cesio , Radioisótopos de Cesio , Japón , Plantas de Energía Nuclear , Volatilización
10.
Sci Total Environ ; 715: 136906, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32041044

RESUMEN

Water-rock interactions in aquifer systems are a key control on water quality but remain poorly understood. Lithium (Li) isotopes are useful for understanding water-rock interactions, but there are few data available for groundwater aquifers. Here we present a Li isotope dataset for rainfall and groundwater samples from a carbonate island aquifer system: Rottnest Island, Western Australia. This dataset was complemented by strontium (Sr) isotope and major and trace element data for groundwaters, and leaching experiments on bedrock samples. The δ7Li values and 87Sr/86Sr ratios of fresh groundwaters ranged from +23 to +36‰ and 0.709167 to 0.709198, respectively. Mass balance calculations indicated that silicate weathering supplied ~60 and 70% of dissolved Li and Sr in fresh groundwaters, respectively, with the remainder provided by atmospheric input, and carbonate weathering; for major cations, the majority of calcium and sodium (Na) are supplied by carbonate weathering and atmospheric input, respectively. The estimated low proportion of Sr produced by carbonate weathering was surprising in a carbonate aquifer, and the 87Sr/86Sr data indicated that the silicate Sr source had low Rb/Sr and 87Sr/86Sr ratios. There was an increase in the maximum δ7Li values in fresh groundwaters (+36‰) relative to the maximum value in rainfall and seawater (ca. +31‰). As clay minerals are undersaturated in fresh groundwaters, this increase may be explained by Li isotope fractionation associated with ion-exchange reactions on clays and iron(oxy)hydroxides. In the more saline groundwaters, the minimum δ7Li values decreased with depth to +14.5‰, suggesting increased silicate mineral dissolution in the deeper aquifer. These results reveal the importance of water-rock interactions in a coastal carbonate aquifer, and demonstrate the usefulness of Li isotopes for tracing weathering reactions in an environmental setting where traditional weathering tracers, such as sodium and Sr isotopes, are less appropriate.

11.
Pharmacol Biochem Behav ; 190: 172875, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32084493

RESUMEN

Sub-anesthetic doses of ketamine produce an increase in rodent ambulation that is attenuated by co-administration of naturally-occurring lithium (LiN), the drug most commonly employed in the treatment of bipolar illness. As a consequence, ketamine-induced hyperactivity has been proposed as an animal model of manic behavior. The current study employed a modified version of this model to compare the potency of LiN to that of each of its two stable isotopes - lithium-6 (Li-6) and lithium-7 (Li-7). Since Li-7 constitutes 92.4% of the parent compound it was hypothesized to produce comparable behavioral effects to that of LiN. The current study was devised to determine whether Li-6 might be more, less, or equally effective at tempering hyperactivity relative to Li-7 or to LiN in an animal model of manic behavior. Male rats were maintained on a restricted but high-incentive diet containing a daily dose of 2.0 mEq/kg of lithium (LiN), Li-6 or Li-7 for 30 days. A control group consumed a diet infused with sodium chloride (NaCl) in place of lithium to control for the salty taste of the food. On day 30, baseline testing revealed no differences in the locomotor behavior among the four treatment groups. Animals then continued their Li/NaCl diets for an additional 11 days during which every subject received a single IP injection of either ketamine (25 mg/kg) or 0.9% physiological saline. On the final four days of this regimen, locomotor activity was assessed during 60 min sessions each beginning immediately after ketamine injection. While all three lithium groups produced comparable decreases in ketamine-induced hyperactivity on the first trial, by the fourth trial Li-6 animals exhibited significantly greater and more prolonged reductions in hyperactivity compared to either Li-7 and Li. These results suggest that Li-6 may be more effective at treating mania than its parent compound.


Asunto(s)
Antimaníacos/uso terapéutico , Isótopos/administración & dosificación , Ketamina/farmacología , Cloruro de Litio/administración & dosificación , Litio/administración & dosificación , Manía/inducido químicamente , Manía/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Locomoción/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
12.
Molecules ; 24(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366033

RESUMEN

The adsorption of lithium ions(Li+) and the separation of lithium isotopes have attracted interests due to their important role in energy storage and nuclear energy, respectively. However, it is still challenging to separate the Li+ and its isotopes with high efficiency and selectivity. A novel cellulose-based microsphere containing crown ethers groups (named as MCM-g-AB15C5) was successfully synthesized by pre-irradiation-induced emulsion grafting of glycidyl methacrylate (GMA) and followed by the chemical reaction between the epoxy group of grafted polymer and 4'-aminobenzo-15-crown-5 (AB15C5). By using MCM-g-AB15C5 as adsorbent, the effects of solvent, metal ions, and adsorption temperature on the adsorption uptake of Li+ and separation factor of 6Li/7Li were investigated in detail. Solvent with low polarity, high adsorption temperature in acetonitrile could improve the uptake of Li+ and separation factor of lithium isotopes. The MCM-g-AB15C5 exhibited the strongest adsorption affinity to Li+ with a separation factor of 1.022 ± 0.002 for 6Li/7Li in acetonitrile. The adsorption isotherms in acetonitrile is fitted well with the Langmuir model with an ultrahigh adsorption capacity up to 12.9 mg·g-1, indicating the unexpected complexation ratio of 1:2 between MCM-g-AB15C5 and Li+. The thermodynamics study confirmed the adsorption process is the endothermic, spontaneous, and chemisorption adsorption. As-prepared novel cellulose-based adsorbents are promising materials for the efficient and selective separation of Li+ and its isotopes.


Asunto(s)
Celulosa/química , Éteres Corona/química , Litio/aislamiento & purificación , Radioisótopos/aislamiento & purificación , Acetonitrilos/química , Adsorción , Electricidad , Compuestos Epoxi/química , Metacrilatos/química , Microesferas , Energía Nuclear , Termodinámica
13.
J Chromatogr A ; 1602: 206-216, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133423

RESUMEN

Adsorptive membrane-based chromatography can provide the high separation efficiency common to column chromatography but at a lower working pressure. Herein, a novel membrane chromatography system for lithium isotope adsorptive separation is reported. It uses polysulfone-graft-4'-aminobenzo-15-crown-5-ether (PSf-g-AB15C5) porous membranes (0.52 mmol/g of immobilization crown ether, average pore size of 62.7 nm, porosity of 80.4%) as a stationary phase packed in a chromatography column (Ø 25 × 100 mm). Furthermore, a four-stage tandem membrane chromatography system was designed to enhance lithium isotope separation performance. The partial eluate from the former column was used as the feed solution for the next stage. Results show that the flow rate of the eluent could reach 18 mL/h owing to the lower internal diffusion resistance of membranes. Meanwhile, adsorption isotherms and adsorption kinetics show that Li+ adsorption was an exothermic and spontaneous process. The surface diffusion, multilayer adsorption and ion-pore electrostatic interaction between Li+ and the crown ether groups on the membranes played a key role in the separation of 7Li+ and 6Li+ by membrane chromatography. The separation factor obtained from the single-stage membrane chromatography was up to 1.0232. The abundances of 7Li+ and 6Li+ gradually increased with an increase in the elution stages. The relative abundances of 7Li+ and 6Li+ obtained from the four-stage tandem membrane chromatography increased by 0.26% (from 92.40 to 92.66%) and 0.2% (from 7.60 to 7.80%), respectively. In conclusion, our current research opens a new avenue for the simultaneous enrichment of 7Li+ and 6Li+ during lithium isotope adsorptive separation.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía , Éteres/química , Isótopos/aislamiento & purificación , Litio/aislamiento & purificación , Adsorción , Difusión , Isótopos/química , Cinética , Litio/química , Membranas Artificiales , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA