Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274061

RESUMEN

In this work, the resistance of polylactide-based non-wovens produced by solution blow spinning to environmental factors was investigated. An average contact angle of up to 136° was achieved with an average fiber diameter of 340 nm at the optimal material density and nozzle-substrate distance. When exposed to ultraviolet (UV) radiation, the polylactide non-wovens rapidly lose their hydrophobic properties due to changes in surface morphology resulting from fiber melting. It was demonstrated that the influence of surface structural features on hydrophobicity is greater than that of the material itself. The stability of the wetting properties under UV irradiation was assessed using the derivative parameters of the Owens-Wendt technique, which can serve as an additional method for estimating surface polarity.

2.
ACS Appl Mater Interfaces ; 16(36): 48448-48456, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186756

RESUMEN

Structural colors particularly of the angle-independent category stemming from wavelength-dependent light scattering have aroused increasing interest due to their considerable applications spanning displays and sensors to detection. Nevertheless, these colors would be heavily altered and even disappear during practical applications, which is related with the variation of refractive index mismatch by liquid wetting/infiltrating. Inspired by bird feathers, we propose a simple deposition toward the coating with angle-independent structural color and superamphiphobicity. The coating is composed of ∼200 nm-sized channel-type structures between hollow silica and air nanostructures, exhibiting a robust sapphire blue color independent of intense liquid intrusion, which duplicates the characteristics of the back feather of Eastern Bluebird. A high color saturation and superamphiphobicity of the biomimetic coating are optimized by manipulating the coating parameters or adding black substances. Excellent durability under harsh conditions endows the coating with long-term service life in various extreme environments.

3.
Biomimetics (Basel) ; 8(8)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38132523

RESUMEN

The liquid-repellent properties of AISI 304 stainless steel surfaces textured with a femtosecond laser were studied, both after spontaneous hydrophobization and when treated with stearic acid and octyltrimethoxysilane. Surface topography has been shown to play a critical role in determining these properties. Although textures containing only LIPSS exhibited poor liquid-repellency, the performance was significantly improved after engraving the microtexture. The most effective topography consisted of 45 µm-wide grooves with a pitch of 60 µm and protrusions covered with a rough microcrystalline structure. Liquid-repellency, chemical treatment efficiency, and UV resistance were compared using derived Owens-Wendt parameters. The surface of femtosecond-laser-textured steel after spontaneous hydrophobization was found to be significantly less stable under UV irradiation than surfaces treated with stearic acid or octyltrimethoxysilane modifiers.

4.
ACS Appl Mater Interfaces ; 15(48): 56537-56546, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992157

RESUMEN

Antifouling is essential to guaranteeing the sensitivity and precision of flexible sensing interfaces. Materials and structures are the two primary strategies. However, optimizing the inherent microstructures to integrate waterproofing and sensing is rarely reported. To improve the liquid repellency of micropyramid structures, this work presents a study of the design and fabrication of T-shaped micropyramid structures. These structures are patterned uniformly and largely on polydimethylsiloxane (PDMS) skin by the new process of two-step magnetic induction. The waterproofing is related to the breakthrough pressure and the liquid repellency, both of which are a function of structural characteristics, D, and material properties, θY. At the breakthrough transition, two failure models distinguished by θY appear: the depinning transition and the sagging transition. Meanwhile, when considering D in practice, some models will shift and occur early. The D value regulates the transition of the material's wettability to the liquid repellency. The influence of the material's inherent nonwettability on liquid repellency diminishes as D decreases, and the transition from completely wetting liquids to super-repellents can be achieved. Experiments demonstrate that for D = 0.3 under water the resistance is approximately 142 times larger than the depth of the structure, considerably facilitating the waterproofing of conventional micropyramid arrays. This work provides a novel method for fabricating flexible T-shaped micropyramid array structures and opens a new window on flexible sensing interfaces with excellent waterproofing.

5.
Front Bioeng Biotechnol ; 10: 1032640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246360

RESUMEN

Nature always inspires us to develop advanced materials for diverse applications. The liquid-infused surface (LIS) inspired by Nepenthes pitcher plants has aroused broad interest in fabricating anti-biofouling materials over the past decade. The infused liquid layer on the solid substrate repels immiscible fluids and displays ultralow adhesion to various biomolecules. Due to these fascinating features, bioinspired LIS has been applied in biomedical-related fields. Here, we review the recent progress of LIS in bioengineering, medical devices, and biosensing, and highlight how the infused liquid layer affects the performance of medical materials. The prospects for the future trend of LIS are also presented.

6.
Micromachines (Basel) ; 13(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893158

RESUMEN

Slippery liquid-infused porous surfaces (SLIPSs) have become an effective method to provide materials with sliding performance and, thus, achieve liquid repellency, through the process of infusing lubricants into the microstructure of the surface. However, the construction of microstructures on high-strength metals is still a significant challenge. Herein, we used a femtosecond laser with a temporally shaped Bessel beam to process NiTi alloy, and created uniform porous structures with a microhole diameter of around 4 µm, in order to store and lock lubricant. In addition, as the lubricant is an important factor that can influence the sliding properties, five different lubricants were selected to prepare the SLIPSs, and were further compared in terms of their sliding behavior. The temperature cycle test and the hydraulic pressure test were implemented to characterize the durability of the samples, and different liquids were used to investigate the possible failure under complex fluid conditions. In general, the prepared SLIPSs exhibited superior liquid repellency. We believe that, in combination with a femtosecond laser, slippery liquid-infused porous surfaces are promising for applications in a wide range of areas.

7.
ACS Nano ; 15(8): 13559-13567, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34339162

RESUMEN

We report macroscopic evidence of the liquidlike nature of surface-tethered poly(dimethylsiloxane) (PDMS) brushes by studying their adhesion to ice. Whereas ice permanently detaches from solid surfaces when subjected to sufficient shear, commonly referred to as the material's ice adhesion strength, adhered ice instead slides over PDMS brushes indefinitely. When additionally methylated, we observe Couette-like flow of the PDMS brushes between the ice and silicon surface. PDMS brush ice adhesion displays a shear-rate-dependent shear stress, rheological behavior reminiscent of liquids, and is affected by ice velocity, temperature, and brush thickness, following scaling laws akin to liquid PDMS films. This liquidlike nature allows ice to detach solely by self-weight, yielding an ice adhesion strength of 0.3 kPa, 1000 times less than a low surface energy, perfluorinated monolayer. The methylated PDMS brushes also display omniphobicity, repelling essentially all liquids with vanishingly small contact angle hysteresis. Methylation results in significantly higher contact angles than previously reported, nonmethylated brushes, especially for polar liquids of both high and low surface tension.

8.
ACS Appl Mater Interfaces ; 13(24): 29092-29100, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34078079

RESUMEN

Droplets impacting solid surfaces is ubiquitous in nature and of practical importance in numerous industrial applications. For liquid-repelling applications, rigidity-based asymmetric redistribution and flexibility-based structural oscillation strategies have been proven on artificial surfaces; however, these are limited by strict impacting positioning. Here, we show that the gap between these two strategies can be bridged by a flexibility-patterned design similar to a trampoline park. Such a flexibility-patterned design is realized by three-dimensional projection micro-stereolithography and is shown to enhance liquid repellency in terms of droplet impalement resistance and contact time reduction. This is the first demonstration of the synergistic effect obtained by a hybrid solution that exploits asymmetric redistribution and structural oscillation in liquid-repelling applications, paving the rigidity-flexibility cooperative way of wettability tuning. Also, the flexibility-patterned surface is applied to accelerate liquid evaporation.

9.
ACS Appl Mater Interfaces ; 13(26): 31310-31319, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34171192

RESUMEN

Biomimetic liquid-repelling surfaces have been the subject of considerable scientific research and technological application. To design such surfaces, a flexibility-based oscillation strategy has been shown to resolve the problem of liquid-surface positioning encountered by the previous, rigidity-based asymmetry strategy; however, its usage is limited by weak mechanical robustness and confined repellency enhancement. Here, we design a flexible surface comprising mesoscale heads and microscale spring sets, in analogy to the mushroomlike geometry discovered on springtail cuticles, and then realize this through three-dimensional projection microstereolithography. Such a surface exhibits strong mechanical robustness against ubiquitous normal and shear compression and even endures tribological friction. Simultaneously, the surface elevates water repellency for impacting droplets by enhancing impalement resistance and reducing contact time, partially reaching an improvement of ∼80% via structural tilting movements. This is the first demonstration of flexible interfacial structures to robustly endure tribological friction as well as to promote water repellency, approaching real-world applications of water repelling. Also, a flexibility gradient is created on the surface to directionally manipulate droplets, paving the way for droplet transport.

10.
Adv Mater ; 33(23): e2100237, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33955585

RESUMEN

Coatings with low sliding angles for liquid drops have a broad range of applications. However, it remains a challenge to have a fast, easy, and universal preparation method for coatings that are long-term stable, robust, and environmentally friendly. Here, a one-step grafting-from approach is reported for poly(dimethylsiloxane) (PDMS) brushes on surfaces through spontaneous polymerization of dichlorodimethylsilane fulfilling all these requirements. Drops of a variety of liquids slide off at tilt angles below 5°. This non-stick coating with autophobicity can reduce the waste of water and solvents in cleaning. The strong covalent attachment of the PDMS brush to the substrate makes them mechanically robust and UV-tolerant. Their resistance to high temperatures and to droplet sliding erosion, combined with the low film thickness (≈8 nm) makes them ideal candidates to solve the long-term degradation issues of coatings for heat-transfer surfaces.

11.
ACS Appl Mater Interfaces ; 13(13): 15901-15909, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33754694

RESUMEN

Porous lubricated surfaces (aka slippery liquid-infused porous surfaces, SLIPS) have been demonstrated to repel various liquids. The origin of this repellency, however, is not fully understood. By using surface-sensitive sum frequency generation vibrational spectroscopy, we characterized the water/oil interface of a water droplet residing on (a) an oil-impregnated nanostructured surface (SLIPS) and (b) the same oil layer without the underlying nanostructures. Different from water molecules in contact with bulk oil without nanostructures, droplets on SLIPS adopt a molecular orientation that is predominantly parallel to the water/oil interface, leading to weaker hydrogen bonding interactions between water droplets and the lubrication film, giving SLIPS their water repellency. Our results demonstrate that the molecular interactions between two contacting liquids can be manipulated by the implementation of nanostructured substrates. The results also offer the molecular principles for controlling nanostructure to reduce oil depletion-one of the limitations and major concerns of SLIPS.

12.
Small ; 17(3): e2006695, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33345437

RESUMEN

The bouncing of droplets on super-repellent surfaces normally resembles specular reflection that obeys the law of reflection. Here, the nonspecular reflection of droplet impingement onto solid surfaces with a dimple for energy-efficient, omnidirectional droplet transport is reported. With the dimple of the radius being comparable to that of the droplet, all the symmetries in the law of reflection can be broken down so that the droplet is endowed with a translational velocity finely tunable in both its direction and magnitude simply by varying the radii of the droplet and the dimple, the impinging position, and droplet Weber number. Tailoring the initial and translational velocity of impinging droplets would steer their reflected trajectories at will, thus enabling versatile droplet manipulation including trapping, shedding, antigravity transport, targeted positioning, and on-demand coalescence of droplets.

13.
ACS Nano ; 14(10): 13367-13379, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33064463

RESUMEN

Condensation is a universal phenomenon that occurs in nature and industry. Previous studies have used superhydrophobicity and liquid infusion to enable superior liquid repellency due to reduced contact angle hysteresis. However, small condensate droplets remain immobile on condensing surfaces until they grow to the departing size at which the body force can overcome the contact line pinning force. Hence, condensation heat transfer is limited by these remaining droplets that act as thermal barriers. To break these limitations, we introduce vibrational actuation to a slippery liquid-infused nanoporous surface (SLIPS) and show enhanced droplet mobility, controllable condensate repellency, and more efficient heat transfer compared to static SLIPSs. We demonstrate 39% smaller departing droplet size and 8× faster droplet departing speeds on the dynamic vibrating SLIPS compared to the nonactuated SLIPS. To understand the implications of these behaviors on heat transfer, we investigate the condensate area coverage and droplet distribution to verify enhanced dewetting on dynamic vibrating SLIPSs. Using well-validated heat transfer models, we demonstrate enhanced condensation heat transfer on dynamic SLIPSs due to the higher population of smaller condensate droplets (<100 µm). In addition to condensation heat transfer, we also show that vibrating SLIPSs can enhance droplet collection. This work utilizes the synergistic combination of surface chemistry and mechanical actuation to realize enhanced droplet mobility and heat transfer in an electrically controllable and switchable manner.

14.
ACS Appl Mater Interfaces ; 12(17): 20084-20095, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32255601

RESUMEN

Surfaces with ultralow adhesion to liquids and solids have attracted broad interests in both fundamental studies and engineering applications from passive removal of highly wetting liquids and water harvesting to anti-/de-icing. The current state-of-the-art superomniphobic surfaces (rely on air lubricant) and liquid-infused surfaces (rely on liquid lubricant) suffer from severe issues for liquid repellency and ice removal: air/liquid lubricant loss or topography damage. Here, we create a durable quasi-liquid surface by tethering flexible polymer on various solid substrates. The untethered end of the polymer has mobile chains that behave like a liquid layer and greatly reduce the interfacial adhesion between the surface and foreign liquids/solids. Such a quasi-liquid surface with a 30.1 nm flexible polymer layer shows ultralow contact angle hysteresis (≤1.0°) to liquids regardless of their surface tensions. The highly wetting perfluorinated liquids like FC72 and Krytox101, as well as complex fluids like urine and crude oil, can be repelled from the surface. Moreover, wind can remove accreted ice from the surface in harsh conditions due to the negligible ice adhesion. We have demonstrated that the quasi-liquid surface shows robust performances in repelling highly wetting liquids, harvesting water, and removing ice, respectively.

15.
Small ; 16(19): e2000779, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32285646

RESUMEN

The skin of springtails is well-known for being able to repel water and organic liquids using their hexagonally arranged protrusions with reentrant structures. Here, a method to prepare 100 nm-sized nanohoodoo arrays with quasi-doubly reentrant structures over square centimeters through combining the nanosphere lithography and the template-protected selective reactive ion etching technique is demonstrated. The top size of the nanohoodoos, the intra-nanohoodoo distance, and the height of the nanohoodoos can be readily controlled by the plasma-etching time of the polystyrene (PS) spheres, the size of the PS spheres used, and the reactive ion etching time of silicon. The strong structural control capability allows for the study of the relationship between the nanohoodoo structure and the wetting property. Superamphiphobic nanohoodoo arrays with outstanding water/organic liquid repellent properties are finally obtained. The superamphiphobic and liquid repellent properties endow the nanohoodoo arrays with remarkable self-cleaning performance even using hot water droplets, anti-fogging performance, and the surface-enhanced Raman scattering sensitivity improvement by enriching the analyte molecules on the nanohoodoo arrays. Overall, the simple and massive production of the superamphiphobic nanohoodoo structures will push their practical application processes in diverse fields where wettability and liquid repellency need to be carefully engineered.

16.
ACS Appl Mater Interfaces ; 12(3): 4174-4182, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31889435

RESUMEN

Artificial liquid-repellent surfaces have recently attracted vast scientific attention; however, achieving mechanical robustness remains a formidable challenge before industrialization can be realized. To this end, inspired by plateaus in geological landscapes, a self-compensating strategy is developed to pave the way for the synthesis of durable repellent surfaces. This self-compensating surface comprises tall hydrophobic structural elements, which can repel liquid droplets. When these elements are damaged, they expose shorter structural elements that also suspend the droplets and thus preserve interfacial repellency. An example of this plateau-inspired stratified surface was created by three-dimensional (3D) direct laser lithography micro-nano fabrication. Even after being subjected to serious frictional damage, it maintained static repellency to water with a contact angle above 147° and was simultaneously able to endure high pressures arising from droplet impacts. Extending the scope of nature-inspired functional surfaces from conventional biomimetics to geological landscapes, this work demonstrates that the plateau-inspired self-compensating strategy can provide an unprecedented level of robustness in terms of sustained liquid repellency.

17.
Adv Sci (Weinh) ; 6(18): 1900798, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31559129

RESUMEN

Natural and artificial super-repellent surfaces are frequently textured with pillar-based discrete structures rather than hole-based continuous ones because the former exhibits lower adhesion from the reduced length of the three-phase contact line. Counterintuitively, here, the unusual topographic effects are discovered on hot-water super-repellency where the continuous microcavity surface outperforms the discrete microneedle/micropillar surface. This anomaly arises from the different dependencies of liquid-repellency stability on the surface structure and water temperature in the two topographies. The unexpected wetting dynamics are interpreted by determining timescales for droplet evaporation, vapor condensation, and droplet bouncing. The associated heat transfer process is unique to the wetting states and remarkably distinct from each other in the two topographies. It is envisioned that hot-water super-repellent microcavity surfaces will be advantageous for a variety of applications, especially when both self-cleaning and thermal insulation are imperative, such as clothing for scald protection and digital microfluidics for exothermic reactions.

18.
SLAS Technol ; 24(6): 535-542, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31180792

RESUMEN

Exclusive liquid repellency (ELR) describes an extreme wettability phenomenon in which a liquid phase droplet is completely repelled from a solid phase when exposed to a secondary immiscible liquid phase. Earlier, we developed a multi-liquid-phase open microfluidic (or underoil) system based on ELR to facilitate rare-cell culture and single-cell processing. The ELR system can allow for the handling of small volumes of liquid droplets with ultra-low sample loss and biofouling, which makes it an attractive platform for biological applications that require lossless manipulation of rare cellular samples (especially for a limited sample size in the range of a few hundred to a few thousand cells). Here, we report an automated platform using ELR microdrops for single-particle (or single-cell) isolation, identification, and retrieval. This was accomplished via the combined use of a robotic liquid handler, an automated microscopic imaging system, and real-time image-processing software for single-particle identification. The automated ELR technique enables rapid, hands-free, and robust isolation of microdrop-encapsulated rare cellular samples.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Robótica/instrumentación , Automatización de Laboratorios , Procesamiento de Imagen Asistido por Computador , Gotas Lipídicas , Imagen Individual de Molécula , Humectabilidad
19.
ACS Appl Mater Interfaces ; 11(12): 11106-11111, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30855937

RESUMEN

Until now, scalable fabrication and utilization of superamphiphobic surfaces based on sophisticated structures has remained challenging. Herein, we develop an applicable superamphiphobic surface with nano-Ni pyramid/micro-Cu cone structures prepared by cost-effective electrochemical deposition. More importantly, excellent dynamic wettability is achieved, exhibiting as ultralow sliding angle (∼0°), multiple droplets rebounding (13 times), and a total rejection. The supportive cushions trapped within the dual-scale micro/nanostructures is proved to be the key factor contributing to such high liquid repellency, whose existence is intuitively ascertained at both solid-air-liquid and water-solid-oil systems in this work. In addition, the enduring reliability of the wetting performance under various harsh conditions further endows the surface with broader application prospects.

20.
Nano Lett ; 19(3): 1892-1901, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30726096

RESUMEN

Super-hydrophobic, super-oleo(amphi)phobic, and super-omniphobic materials are universally important in the fields of science and engineering. Despite rapid advancements, gaps of understanding still exist between each distinctive wetting state. The transition of super-hydrophobicity to super-(oleo-, amphi-, and omni-)phobicity typically requires the use of re-entrant features. Today, re-entrant geometry induced super-(amphi- and omni-)phobicity is well-supported by both experiments and theory. However, owing to geometrical complexities, the concept of re-entrant geometry forms a dogma that limits the industrial progress of these unique states of wettability. Moreover, a key fundamental question remains unanswered: are extreme surface chemistry enhancements able to influence super-liquid repellency? Here, this was rigorously tested via an alternative pathway that does not require explicit designer re-entrant features. Highly controllable and tunable vertical network polymerization and functionalization were used to achieve fluoroalkyl densification on nanoparticles. For the first time, relative fluoro-functionalization densities are quantitatively tuned and correlated to super-liquid repellency performance. Step-wise tunable super-amphiphobic nanoparticle films with a Cassie-Baxter state (contact angle of >150° and sliding angle of <10°) against various liquids is demonstrated. This was tested down to very low surface tension liquids to a minimum of ca. 23.8 mN/m. Such findings could eventually lead to the future development of super-(amphi)omniphobic materials that transcend the sole use of re-entrant geometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA