Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 28(22): e202200263, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35233854

RESUMEN

Precisely onsite monitoring of hypochlorite (ClO- ) is of great significance to guide its rational use, reducing/avoiding its potential threat toward food safety and human health. Considering ClO- could quench fluorescence of curcumin (CCM) by oxidizing the o-methoxyphenol of CCM into benzoquinone, a portable ratiometric fluorescence sensor integrated with smartphone was designed for realizing the visual point-of-care testing (POCT) of ClO- . The amphiphilic phospholipid polymer was used as carrier to wrap curcumin, forming a novel liposome-encapsulated CCM, which provided a scaffold to bind with [Ru(bpy)3 ]2+ through electrostatic interaction, thus assembling [Ru(bpy)3 ]2+ -functionalized liposome-encapsulated CCM ([Ru(bpy)3 ]2+ @CCM-NPs). Further integrated with smartphone, visual imaging of [Ru(bpy)3 ]2+ @CCM-NPs could be achieved and the accurate onsite detection of ClO- could be realized with a detection limit of 66.31 nM and a linear range of 0.2210 to 80.0 µM. In addition, the sensor could monitor ClO- in real samples with an onsite detection time of ∼154.0 s.


Asunto(s)
Curcumina , Ácido Hipocloroso , Colorantes Fluorescentes , Humanos , Liposomas , Imagen Óptica , Teléfono Inteligente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA