Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39065577

RESUMEN

The E6 and E7 oncoproteins of high-risk types of human papillomavirus (HR-HPV) are crucial for the development of cervical cancer (CC). Small interfering RNAs (siRNAs) are explored as novel therapies that silence these oncogenes, but their clinical use is hampered by inefficient delivery systems. Modification (pegylation) with polyethylene glycol (PEG) of liposomal siRNA complexes (siRNA lipoplexes) may improve systemic stability. We studied the effect of siRNA targeting HPV16 E6, delivered via cationic liposomes (lipoplexes), on cellular processes in a cervical carcinoma cell line (CaSki) and its potential therapeutic use. Lipoplexes-PEG-HPV16 E6, composed of DOTAP, Chol, DOPE, and DSPE-PEG2000 were prepared. The results showed that pegylation (5% DSPE-PEG2000) provided stable siRNA protection, with a particle size of 86.42 ± 3.19 nm and a complexation efficiency of over 80%; the siRNA remained stable for 30 days. These lipoplexes significantly reduced HPV16 E6 protein levels and restored p53 protein expression, inhibiting carcinogenic processes such as proliferation by 25.74%, migration (95.7%), and cell invasion (97.8%) at concentrations of 20 nM, 200 nM, and 80 nM, respectively. In conclusion, cationic lipoplexes-PEG-HPV16 E6 show promise as siRNA carriers for silencing HPV16 E6 in CC.

2.
Pharmaceutics ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34200993

RESUMEN

Since the possibility of silencing specific genes linked to retinal degeneration has become a reality with the use of small interfering RNAs (siRNAs), this technology has been widely studied to promote the treatment of several ocular diseases. Despite recent advances, the clinical success of gene silencing in the retina is significantly reduced by inherent anatomical and physiological ocular barriers, and new strategies are required to achieve intraocular therapeutic effectiveness. In this study, we developed lipoplexes, prepared with sodium alginate as an adjuvant and strategically coated with hyaluronic acid (HA-LIP), and investigated the potential neuroprotective effect of these systems in a retinal light damage model. Successful functionalization of the lipoplexes with hyaluronic acid was indicated in the dynamic light scattering and transmission electron microscopy results. Moreover, these HA-LIP nanoparticles were able to protect and deliver siRNA molecules targeting caspase-3 into the retina. After retinal degeneration induced by high light exposure, in vitro and in vivo quantitative reverse transcription-PCR (RT-qPCR) assays demonstrated significant inhibition of caspase-3 expression by HA-LIP. Furthermore, these systems were shown to be safe, as no evidence of retinal toxicity was observed by electroretinography, clinical evaluation or histology.

3.
Colloids Surf B Biointerfaces ; 152: 406-413, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28157648

RESUMEN

In this work, pDNA/cationic liposome (CL) lipoplexes for gene delivery were prepared in one-step using multiple hydrodynamic flow-focusing regions. The microfluidic platform was designed with two distinct regions for the synthesis of liposomes and the subsequent assembly with pDNA, forming lipoplexes. The obtained lipoplexes exhibited appropriate physicochemical characteristics for gene therapy applications under varying conditions of flow rate-ratio (FRR), total volumetric flow rate (QT) and pDNA content (molar charge ratio, R±). The CLs were able to condense and retain the pDNA in the vesicular structures with sizes ranging from 140nm to 250nm. In vitro transfection assays showed that the lipoplexes prepared in one step by the two-stage configuration achieved similar efficiencies as lipoplexes prepared by conventional bulk processes, in which each step comprises a series of manual operations. The integrated microfluidic platform generates lipoplexes with liposome formation combined in-line with lipoplex assembly, significantly reducing the number of steps usually required to form gene carrier systems.


Asunto(s)
ADN/química , Liposomas/química , Microfluídica/métodos , Técnicas de Transferencia de Gen , Plásmidos/química
4.
Int J Pharm ; 514(1): 103-111, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27863652

RESUMEN

We have investigated the impact of hyaluronic acid (HA)-coating on the targeting capacity of siRNA lipoplexes to CD44-overexpressing tumor cells. Cellular uptake and localization of HA-lipoplexes were evaluated by flow cytometry and fluorescence microscopy and both methods showed that these lipoplexes were rapidly internalized and localized primarily within the cytoplasm. Inhibition of luciferase expression on the A549-luciferase lung cancer cell line was achieved in vitro using an anti-Luc siRNA. 81% of luciferase gene expression inhibition was obtained in vitro with HA-lipoplexes at +/- ratio 2. In vivo, in a murine A549 metastatic lung cancer model, the treatment with HA-lipoplexes carrying anti-luciferase siRNA led to a statistically significant decrease of luciferase expression as opposed to progressive increase with non-modified lipoplexes or NaCl 0.9%. The reduction of the expression of luciferase mRNA tumor of mice treated with HA-lipoplexes supported the inhibition effect due to siRNA. These results highlight the potential of HA-lipoplexes in CD44-targeting siRNA delivery.


Asunto(s)
Ácido Hialurónico/química , Liposomas/química , Neoplasias Pulmonares/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Luciferasas/metabolismo , Ratones , ARN Mensajero/metabolismo
5.
Methods Mol Biol ; 1445: 137-48, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27436316

RESUMEN

RNA interference is an invaluable tool in biology to specifically silence a given gene. Synthetic duplexes of RNA oligonucleotides are widely used to induce mRNA degradation in cultured cells or in whole organisms. They have to be vectorized to reach their target site. Here, we describe the preparation of highly efficient siRNA vectors based on cationic liposomes and polyanionic polymers and their application in cultured cells to silence reporter and/or endogenous genes.


Asunto(s)
Lípidos/química , Polímeros/química , ARN Interferente Pequeño/genética , Animales , Aniones/química , Cationes/química , Línea Celular Tumoral , Técnicas de Transferencia de Gen , Liposomas , Ratones , Tamaño de la Partícula , ARN Interferente Pequeño/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA