Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893326

RESUMEN

This study was aimed at investigating the phytochemical profile and bioactivity of Diplotaxis harra subsp. crassifolia (Brassicaceae), a species from central-southern Sicily (Italy), where it is consumed as a salad. For this purpose, LC-ESI/HRMSn analysis of the ethanolic extract was performed, highlighting the occurrence, along with flavonoids, hydroxycinnamic acid derivatives, and oxylipins, of sulfated secondary metabolites, including glucosinolates and various sulfooxy derivatives (e.g., C13 nor-isoprenoids, hydroxyphenyl, and hydroxybenzoic acid derivatives), most of which were never reported before in the Brassicaeae family or in the Diplotaxis genus. Following ethnomedicinal information regarding this species used for the treatment of various pathologies such as diabetes and hypercholesterolemia, D. harra ethanolic extract was evaluated for its antioxidant potential using different in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), Ferric Reducing Ability Power, and ß-carotene bleaching tests. The inhibitory activity of carbohydrate-hydrolyzing enzymes (α-amylase and α-glucosidase) and pancreatic lipase was also assessed. In the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid assay, an IC50 value comparable to the positive control ascorbic acid (2.87 vs. 1.70 µg/mL, respectively) was obtained. The wild-wall rocket salad extract showed a significant α-amylase inhibitory effect. Obtained results indicate that Sicilian wild-wall rocket contains phytochemicals that can prevent hyperglycemia, hyperlipidemia, and obesity.


Asunto(s)
Antioxidantes , Fitoquímicos , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Sicilia , Flavonoides/química , Flavonoides/farmacología , Flavonoides/análisis
2.
Food Chem ; 448: 139136, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581964

RESUMEN

Instant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.

3.
Eur J Pharm Sci ; 197: 106765, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608735

RESUMEN

Lipid-based formulations (LBFs) are an enabling-formulation approach for lipophilic poorly water-soluble compounds. In LBFs, drugs are commonly pre-dissolved in lipids, and/or surfactants/cosolvents, hereby avoiding the rate-limiting dissolution step. According to the Lipid formulation classification system, proposed by Pouton in 2006, in type II LBFs a surfactant with an HLB-value lower than 12 is added to the lipids. If high drug doses are required, e.g. for preclinical toxicity studies, supersaturated LBFs prepared at elevated temperatures may be a possibility to increase drug exposure. In the present study, the impact of digestion on drug absorption in rats was studied by pre-dosing of the lipase inhibitor orlistat. The lipid chain length of the type II LBFs was varied by administration of a medium-chain- (MC) and a long-chain (LC)-based formulation. Different drug doses, both non-supersaturated and supersaturated, were applied. Due to an inherent precipitation tendency of cinnarizine in supersaturated LBFs, the effect of the addition of the precipitation inhibitor Soluplus® was also investigated. The pharmacokinetic results were also evaluated by multiple linear regression. In most cases LC-based LBFs did not perform better in vivo, in terms of a higher area under the curve (AUC0-24 h) and maximal plasma concentration (Cmax), than MC-based LBFs. The administration of supersaturated LBFs resulted in increased AUC0-24 h (1.5 - 3.2-fold) and Cmax (1.1 - 2.6-fold)-values when compared to the non-supersaturated equivalents. Lipase inhibition led to a decreased drug exposure in most cases, especially for LC formulations (AUC0-24 h reduced to 47 - 67%, Cmax to 46 - 62%). The addition of Soluplus® showed a benefit to drug absorption from supersaturated type II LBFs (1.2 - 1.7-fold AUC0-24 h), due to an increased solubility of cinnarizine in the formulation. Upon dose-normalization of the pharmacokinetic parameters, no beneficial effect of Soluplus® could be demonstrated.


Asunto(s)
Cinarizina , Lípidos , Cinarizina/química , Cinarizina/farmacocinética , Cinarizina/administración & dosificación , Animales , Masculino , Lípidos/química , Solubilidad , Lactonas/química , Lactonas/farmacocinética , Lactonas/administración & dosificación , Ratas Wistar , Orlistat/administración & dosificación , Orlistat/farmacocinética , Absorción Intestinal , Ratas , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Lipasa/antagonistas & inhibidores , Polivinilos/química , Precipitación Química , Tensoactivos/química , Química Farmacéutica/métodos
4.
Heliyon ; 10(8): e29433, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644870

RESUMEN

Nanoparticles have different shapes and sizes between the range of 1-100 nm, which show advantages for stabilizing compounds, higher carrier capacity, and lower costs. Metal nanoparticles such as copper, gold, silver, and zinc are favorable components for various applications due to their interesting properties. In the present study, nanoparticles were synthesized by reduction with flower extracts of Bauhinia variegate & Saussurea lappa that were used to stabilize the copper nanoparticles. Furthermore, the characterization of plants synthesized copper nanoparticles was carried out through UV-visible dynamic light scattering. Additionally, morphological characterization of nanoparticles was confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed the elemental composition of copper nanoparticles. Powder X-ray diffraction was conducted for the analysis of crystallinity, purity, and crystal size of plant-synthesized copper nanoparticles. The average particle size was evaluated and exhibited the particle size at the peak of 8.721 nm and 98.03 nm for flower extracts of Bauhinia variegate & Saussurea lappa copper nanoparticles. The Fourier Transform Infrared spectrum was taken to scrutinize the various functional groups that were responsible for the reduction of the copper ions. The antimicrobial results against the bacterial strains with the positive test results of the zone of inhibition were for Bauhinia variegate (17 mm, 18 mm, 19 mm, and 18 mm) and Saussurea lappa (17 mm, 19 mm, 18 mm, and 18 mm) respectively for plants synthesized copper nanoparticles against the Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. Lipase inhibition assay and Amylase inhibition assay with different concentrations (20 µg/mL to 100 µg/mL) for Bauhinia variegate & Saussurea lappa (12.34 %-59.67 % and 10.50 %-47.01 %) and (34.52 %-89.02 % and 22.34 %-56.45 %) confirmed the anti-obesity and anti-diabetic activities of plants extract synthesized copper nanoparticles.

5.
BMC Complement Med Ther ; 24(1): 164, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641582

RESUMEN

BACKGROUND: Infections caused by Acinetobacter baumannii are becoming a rising public health problem due to its high degree of acquired and intrinsic resistance mechanisms. Bacterial lipases penetrate and damage host tissues, resulting in multiple infections. Because there are very few effective inhibitors of bacterial lipases, new alternatives for treating A. baumannii infections are urgently needed. In recent years, Brassica vegetables have received a lot of attention since their phytochemical compounds have been directly linked to diverse antimicrobial actions by inhibiting the growth of various Gram-positive and Gram-negative bacteria, yeast, and fungi. Despite their longstanding antibacterial history, there is currently a lack of scientific evidence to support their role in the management of infections caused by the nosocomial bacterium, A. baumannii. This study aimed to address this gap in knowledge by examining the antibacterial and lipase inhibitory effects of six commonly consumed Brassica greens, Chinese cabbage (CC), curly and Tuscan kale (CK and TK), red and green Pak choi (RP and GP), and Brussels sprouts (BR), against A. baumannii in relation to their chemical profiles. METHODS: The secondary metabolites of the six extracts were identified using LC-QTOF-MS/MS analysis, and they were subsequently correlated with the lipase inhibitory activity using multivariate data analysis and molecular docking. RESULTS: In total, 99 metabolites from various chemical classes were identified in the extracts. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed the chemical similarities and variabilities among the specimens, with glucosinolates and phenolic compounds being the major metabolites. RP and GP showed the highest antibacterial activity against A. baumannii, followed by CK. Additionally, four species showed a significant effect on the bacterial growth curves and demonstrated relevant inhibition of A. baumannii lipolytic activity. CK showed the greatest inhibition (26%), followed by RP (21%), GP (21%), and TK (15%). Orthogonal partial least squares-discriminant analysis (OPLS-DA) pinpointed 9 metabolites positively correlated with the observed bioactivities. Further, the biomarkers displayed good binding affinities towards lipase active sites ranging from -70.61 to -30.91 kcal/mol, compared to orlistat. CONCLUSION: This study emphasizes the significance of Brassica vegetables as a novel natural source of potential inhibitors of lipase from A. baumannii.


Asunto(s)
Acinetobacter baumannii , Brassica , Brassica/química , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Espectrometría de Masas en Tándem , Bacterias Gramnegativas , Bacterias Grampositivas , Fitoquímicos/farmacología , Lipasa
6.
Curr Drug Targets ; 25(6): 388-403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500275

RESUMEN

Obesity is a growing global health problem, leading to various chronic diseases. Despite standard treatment options, the prevalence of obesity continues to rise, emphasizing the need for new drugs. in vitro methods of drug discovery research provide a time and cost-saving platform to identify new antiobesity drugs. The review covers various aspects of obesity and drug discovery research using in vitro models. Besides discussing causes, diagnosis, prevention, and treatment, the review focuses on the advantages and limitations of in vitro studies and exhaustively covers models based on enzymes and cell lines from different animal species and humans. In contrast to conventional in vivo animal investigations, in vitro preclinical tests using enzyme- and cell line-based assays provide several advantages in development of antiobesity drugs. These methods are quick, affordable, and provide high-throughput screening. They can also yield insightful information about drug-target interactions, modes of action, and toxicity profiles. By shedding light on the factors that lead to obesity, in vitro tests can also present a chance for personalized therapy. Technology will continue to evolve, leading to the creation of more precise and trustworthy in vitro assays, which will become more and more crucial in the search for novel antiobesity medications.


Asunto(s)
Fármacos Antiobesidad , Descubrimiento de Drogas , Obesidad , Humanos , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Descubrimiento de Drogas/métodos , Obesidad/tratamiento farmacológico , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Evaluación Preclínica de Medicamentos/métodos
7.
Heliyon ; 10(2): e24907, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304787

RESUMEN

Momordica charantia, Nigella sativa, and Anethum graveolens are established medicinal plants possessing noted anti-diabetic and anti-obesity properties. However, the molecular mechanisms underscoring their inhibitory effects on pancreatic lipase, α-glucosidase, and HMG-CoA reductase remain unexplored. This study aimed to elucidate the efficacy of various NS, MC, and AG blends in modulating the enzymatic activity of pancreatic lipase, HMG-CoA reductase, and a-glucosidase, utilizing an integrative approach combining in vitro assessments and molecular modeling techniques. A factorial design matrix generated eight distinct concentration combinations of NS, MC, and AG, subsequently subjected to in vitro enzyme inhibition assays. Molecular docking analyses using AutoDock Vina, molecular dynamics simulations, MMPBSA calculations, and principal component analysis, were executed with Gromacs to discern the interaction dynamics between the compounds and target enzymes. A formulation comprising NS:MC:AG at a 215:50:35 µg/mL ratio yielded significant inhibition of pancreatic lipase (IC50: 74.26 ± 4.27 µg/mL). Moreover, a concentration combination of 215:80:35 µg/mL effectively inhibited both α-glucosidase (IC50: 66.09 ± 3.98 µg/mL) and HMGCR (IC50: 129.03 µg/mL). Notably, MC-derived compounds exhibited superior binding affinity towards all three enzymes, compared to their reference molecules, with diosgenin, Momordicoside I, and diosgenin displaying binding affinities of -11.0, -8.8, and -7.9 kcal/mol with active site residues of pancreatic lipase, α-glucosidase, and HMGCR, respectively. Further, 100 ns molecular dynamics simulations revealed the formation and stabilization of non-bonded interactions between the compounds and the enzymes' active site residues. Through a synergistic application of in vitro and molecular modeling methodologies, this study substantiated the potent inhibitory activity of the NS:MC:AG blend (at a ratio of 215:80:35 µg/mL) and specific MC compounds against pancreatic lipase, α-glucosidase, and HMGCR. These findings provide invaluable insights into the molecular underpinnings of these medicinal plants' anti-diabetic and anti-obesity effects and may guide future therapeutic development.

8.
Food Chem ; 446: 138832, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412808

RESUMEN

In this study, an efficient approach to preparation of different anthocyanins from Purple-heart Radish was developed by combining microwave-assisted extraction (MAE), macroporous resin purification (MRP) and ultrasound-assisted acid hydrolysis (UAAH) for evaluation of physicochemical stability and pancreatic lipase (PL) inhibitory activity. By optimization of MAE, MRP and UAAH processes, the anthocyanins reached the yield of 6.081 ± 0.106 mg/g, the purity of 78.54 ± 0.62 % (w/w) and the content of 76.29 ± 1.31 % (w/w), respectively. With high-resolution UHPLC-Q-Orbitrap/MS, 15 anthocyanins were identified as pelargonins with diverse glucosides and confirmed by pelargonidin standard. By glycosylation, pelargonins exhibited higher stability in different pH, temperature, light, metal ions environments than that of pelargonidin. However, PL inhibitory assay, kinetic analysis and molecular docking demonstrated that pelargonidin had higher PL inhibitory activity than pelargonins even though with similar binding sites and a dose-effect relationship. The above results revealed that the effect of glycosylation and deglycosylation on PL inhibitory activity and physicochemical stability.


Asunto(s)
Antocianinas , Raphanus , Antocianinas/análisis , Raphanus/química , Cinética , Simulación del Acoplamiento Molecular , Lipasa , Extractos Vegetales/química
9.
Foods ; 13(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254575

RESUMEN

When replanting an asparagus field, the roots of the previous crop are crushed and incorporated into the soil, creating problems of autotoxicity and fungal infections. Asparagus roots can be considered as a valuable byproduct, since they are very rich in saponins (3-6%), compounds currently considered as bio-emulsifiers. The objective is to evaluate the emulsifying and foaming capacity of a saponin extract from asparagus roots (ARS) and compare it with other commercial extracts. ARS was obtained using a process patented by our research group. The results have shown that ARS has activity similar to Quillaja extract. Its critical micellar concentration falls between that of Quillaja and Tribulus extracts (0.064, 0.043, and 0.094 g/100 mL, respectively). Both emulsifying and foaming activities are affected by pH, salt, and sucrose to a similar extent as the other extracts. Additionally, it has demonstrated an inhibitory effect on pancreatic lipase, which is even better than the other two studied extracts, as indicated by its IC50 value (0.7887, 1.6366, and 2.0107 mg/mL for asparagus, Quillaja, and Tribulus, respectively). These results suggest that ARS could serve as a natural emulsifying/foaming agent for healthier and safer food products and as a potential aid in treatments for obesity and hyperlipidemia.

10.
Bioorg Med Chem Lett ; 98: 129574, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38052378

RESUMEN

Aurones are a minor subgroup of flavonoids. Unlike other subgroups such as chalcones, flavones, and isoflavones, aurones have not been extensively explored as pancreatic lipase inhibitors. In this work, we studied the pancreatic lipase inhibitory potency of synthetic aurone derivatives. Thirty-six compounds belonging to four series (4,6-dihydroxyaurone, 6-hydroxyaurone, 4,6-dialkoxyaurone, and 6-alkoxyaurone) were designed and synthesized. Their in vitro inhibitory activities were determined by spectrophotometric assay in comparison with quercetin and orlistat. Alkoxyaurone derivatives with long-chain (6-10 carbons) alkoxy substituents showed greater potency. Of them, 4,6-dialkoxyaurone 8 displayed the highest activity against pancreatic lipase (IC50 of 1.945 ± 0.520 µM) relative to quercetin (IC50 of 86.98 ± 3.859 µM) and orlistat (IC50 of 0.0334 ± 0.0015 µM). Fluorescence quenching measurement confirmed the affinity of alkoxyaurone derivatives to pancreatic lipase. Kinetic study showed that 8 inhibited lipase through a competitive mechanism (Ki of 1.288 ± 0.282 µM). Molecular docking results clarified the role of long-chain substituents on ring A in interacting with the hydrophobic pockets and pushing the inhibitor molecule closer to the catalytic triad. The findings in this study may contribute to the development of better pancreatic lipase inhibitors with aurone structure.


Asunto(s)
Lipasa , Quercetina , Inhibidores Enzimáticos/química , Flavonoides/química , Lipasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Orlistat/farmacología
11.
Eur J Pharm Sci ; 192: 106634, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951315

RESUMEN

Enabling formulations, such as lipid-based formulations (LBFs), are means to deliver challenging-to-formulate, poorly soluble drugs. LBFs may be composed of lipids, surfactants and/or cosolvents and can be classified depending on the proportions of the components and the hydrophilicity of the surfactant according to the Lipid Formulations Classification System, ranging from type I (very lipophilic) to type IV (hydrophilic). In cases where drug solubility in LBFs does not suffice, e.g. for preclinical toxicity studies, supersaturated LBFs can be used in order to increase the drug load. However, the effect of digestion on drug absorption from supersaturated type I formulations (consisting exclusively of lipids) still remains relatively unexplored and unclear. In the present study, the impact of lipid digestion on absorption of cinnarizine-loaded supersaturated lipid-based formulations of type I was investigated in rats by pre-dosing of the lipase inhibitor orlistat. The lipid chain length and the drug dose were varied by testing medium-chain triglycerides (MCT) and long-chain triglycerides (LCT), both supersaturated and non-supersaturated. Due to the physical instability of supersaturated formulations of cinnarizine, i.e. a potential of precipitation of cinnarizine, the impact of the addition of the amphiphilic polymer Soluplus®, as a potential precipitation inhibitor, was also investigated. The supersaturated systems resulted in a 2.3 - 3.3-fold higher Area Under the Curve (AUC0-24 h, not dose-normalized) and 1.4 - 2.2-fold higher maximum plasma concentration (Cmax, not dose-normalized) than non-supersaturated formulations (statistically significant with p = 0.05), whereas the addition of Soluplus® did not reveal any benefit. Results indicated that lipase inhibition affected the in vivo performance of LBFs: Co-administration of the lipase inhibitor significantly reduced Cmax and AUC0-24 h (both to 33-39 %, not dose-normalized) for the LCT formulations and, though not significant, a similar trend was observed for the AUC0-24 h of the MCT formulations (to 53-87 %), suggesting a higher dependency on lipolysis for LCT. Also, tmax tended to decrease to 20-60 % when compared to the animals not dosed with orlistat but lacking statistical significance. Without lipase inhibition, the LCT in general lead to better absorption of cinnarizine as compared to MCT, with 1.2-1.7-fold higher AUC0-24 h and 1.4-1.8-fold higher Cmax, but without showing statistical significance. Overall, the study revealed that lipolysis plays a major role in drug absorption from supersaturated lipid-based formulations type I.


Asunto(s)
Cinarizina , Ratas , Animales , Orlistat , Preparaciones Farmacéuticas , Triglicéridos , Solubilidad , Tensoactivos , Lipasa , Digestión , Administración Oral
12.
J Control Release ; 362: 381-395, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579977

RESUMEN

This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.

13.
Neurotox Res ; 41(6): 514-525, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37458923

RESUMEN

Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.


Asunto(s)
Endocannabinoides , Sinaptosomas , Ratas , Animales , Sinaptosomas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Receptores de Cannabinoides , Agonismo Inverso de Drogas , Encéfalo/metabolismo , Estrés Oxidativo , Benzodioxoles/farmacología , Receptor Cannabinoide CB1
14.
Food Chem ; 427: 136605, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390741

RESUMEN

In this paper, the structures of polyphenols and their bioactivity of black mulberry (Morus nigra L.) cv. 'Heisang No. 1' were comprehensively analyzed. The 11 anthocyanins and 20 non-anthocyanin phenolic compounds were identified and quantified by liquid chromatography high-resolution time-of-flight mass spectrometry (LC-HR-TOF/MS2). The cyanidin-3-glucoside and cyanidin-3-rutinoside were the major anthocyanins in the black mulberry. In addition, the black mulberry showed potent antioxidant capacity as assessed by DPPH, ABTS, and FRAP assays. Black mulberry anthocyanins exhibited stronger inhibition activities against α-amylase, α-glucosidase, and lipase compared to non-anthocyanin polyphenols, with IC50 values of 1.10, 4.36, and 9.18 mg/mL, respectively. The total anthocyanin content of black mulberry crude extracts and anthocyanins was 570.10 ± 77.09 and 1278.23 ± 117.60 mg C3GE/100 g DW, respectively. Black mulberry may be a rich source of polyphenols, natural antioxidants, and effective antidiabetic substances with great potential in the food industry.


Asunto(s)
Morus , Polifenoles , Polifenoles/análisis , Antocianinas/análisis , Antioxidantes/química , Morus/química , Fenoles/análisis , Frutas/química , Extractos Vegetales/química
15.
Food Chem ; 416: 135468, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931140

RESUMEN

This study aims to use metal ion coordinating method to improve the bioactivity and anti-hydrolysis ability of bioactive peptides. We demonstrated that zinc (Zn) coordination (10:1 mass ratio of peptide to Zn, pH 6.8, 37 °C) induced assembly of oat peptides, improved pancreatic lipase (PL) inhibitory activity by 30.4-36.8 % and anti-hydrolysis ability against intestinal proteases by 26.5-38.2 %; meanwhile, the peptide-Zn complex drastically reduced the PL affinity to the substrate. Detailed mechanism analysis showed that the high hydrophobicity (276 of fluorescent intensity) and dense eutectic structure of peptide-Zn complexes caused the hard hydrolysis of complexed peptides by proteases; in particular, the neutralized surface charges (∼-3.6 mV) of complexes imparted the peptide-Zn complex high affinity towards PL (-22.3 mV) thus robust PL inhibitory activity. These findings deepened our understanding of the interaction of peptides with metal elements and set the groundwork for the enhancement and protection of bioactive peptides.


Asunto(s)
Avena , Zinc , Zinc/química , Péptidos/farmacología , Péptidos/química , Metales/química , Péptido Hidrolasas
16.
Foods ; 12(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36766094

RESUMEN

This work investigated the phytochemical content and bioactivity of Lycium barbarum collected in Calabria and evaluated, for the first time, the possibility of enriching traditional ciabatta bread with goji fresh flesh puree. For this purpose, goji flesh puree, bread, and bread enriched with 20% and 40% goji flesh puree (G20 and G40 samples, respectively) were subjected to several analyses. Selected compounds were quantified by UHPLC analysis in both goji fresh flesh puree and after simulation of the cooking process. The impact of the addition on key enzymes (lipase, α-amylase, and α-glucosidase) related to metabolic syndrome was assessed together with the antioxidant properties. Texture, colourimetric, and sensory analyses on enriched bread were performed to evaluate consumer acceptance. Despite cooking, the enriched bread maintained good levels of bioactive compounds compared to the berry pulp alone (p < 0.01). The enriched bread showed the ability to protect against lipid peroxidation, with IC50 values of 6.88 and 6.52 µg/mL for samples G20 and G40, respectively, after incubation for 30 min (p < 0.01). Although less active than the control, the enriched bread showed inhibitory activities against the enzymes involved in the digestion of carbohydrates. From a sensory point of view, the addition of goji fresh pulp puree slightly modified the appearance but not the flavour and taste of the bread. Collectively, our results support the potential healthy function of this baked product.

17.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499253

RESUMEN

Previous research showed that canary seed (Phalaris canariensis L.) peptides (CSP) possess robust in vitro antiobesity properties via inhibition of pancreatic lipase (PL). Nevertheless, no studies have yet explored their antiobesity properties in vivo. Consequently, we investigated the effects of CSP in C57BL/6J mice under a Western diet (WD). Mice were assigned into groups and fed a normal diet (ND) or a WD accompanied by an oral dose of CSP (250 or 500 mg/kg/day), orlistat (40 mg/kg/day), or distilled water. The results showed that consuming CSP can provide metabolic benefits, including preventing weight gain by up to 20%, increasing glucose tolerance, and reducing insulin, leptin, and LDL/VLDL levels in plasma. Conversely, total ghrelin was unaffected by CSP-500, but decreased by CSP-250, and amplified by orlistat. Surprisingly, CSP-250 was more effective in preventing weight gain and promoting satiety than CSP-500. Parallel to this, protein absorption in CSP-500 was decreased, supported by a rise in fecal crude protein (+3.5%). Similarly, fecal fat was increased by orlistat (38%) and was unaffected by CSP-250 (3.0%) and CSP (3.0%), comparatively to WD (2.5%). Despite this, both CSP treatments were equally effective in decreasing hepatic steatosis and avoiding hyperlipidemia. Furthermore, the enzymatic analysis showed that CSP-PL complexes dissociated faster (15 min) than orlistat-PL complexes (41 min). Lastly, CSP did not affect expression of hepatic lipid oxidation genes ACO and PPAR-α, but reduced the expression of the hydrolase gene LPL, and lipogenesis related genes FAS and ACC. Taken together, these results suggest that CSP antiobesity mechanism relies on lipid metabolism retardation to increase fat transit time and subsequently suppress hunger.


Asunto(s)
Intolerancia a la Glucosa , Phalaris , Animales , Ratones , Dieta Alta en Grasa , Dieta Occidental , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/prevención & control , Intolerancia a la Glucosa/metabolismo , Lipasa/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/prevención & control , Orlistat/farmacología , Semillas/metabolismo , Aumento de Peso
18.
Int J Biol Macromol ; 222(Pt A): 1531-1537, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36195236

RESUMEN

Pancreatic lipase (PL) is the main digestive enzyme that is responsible for breaking triglycerides into smaller components for absorption. Inhibition of PL can effectively reduce triglyceride absorption, helping to prevent the development of obesity. The objective of this study was to investigate the PL inhibitory activity of peptides derived from sesame (Sesamum indicum L.) in silico and in vitro. In silico proteolysis of sesame proteins with pepsin, trypsin and chymotrypsin was performed with ExPASy PeptideCutter. Six peptides (TF, EW, QWM, NIF, AGY and PIF) were screened out by PeptideRanker, SwissADME and AutoDock. Molecular docking analysis showed that these six peptides could interact directly with Phe77, His151, Ser152, Phe215 and His263 at the key sites of PL. The six peptides were further synthesized to verify their PL-inhibitory effects in vitro, and TF, EW, QWM, NIF and AGY exhibited inhibitory activity on PL with IC50 values of 751 ± 75, 907 ± 91, 986 ± 170, 1044 ± 179 and 1183 ± 179 µM, respectively. Inhibitory kinetics indicated that TF, QWM and NIF were mixed-type inhibitors of PL, while EW and AGY were uncompetitive inhibitors. Our results suggest that peptides from sesame could potentially inhibit the activity of PL.


Asunto(s)
Lipasa , Sesamum , Lipasa/química , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Péptidos/farmacología
19.
Fitoterapia ; 163: 105326, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216138

RESUMEN

Chemical investigation on the fruiting bodies of the mushroom Geoglossum fallax led to the isolation of two carboxamides, geoglamides A and B (1 and 2), one meroterpenoid, geoglol A (3), together with seven known metabolites (4-10). Their structures were identified by spectroscopic analyses as well as ECD calculations. Compounds 1 and 2 are rare long chain fatty amides containing a 4-oxo-1,4-dihydropyridine moiety, while compound 3 is a rare C6-C5 type meroterpenoid. Compound 1 displayed cytotoxic activity against human MCF-7 cells with an IC50 value of 25.9 ± 0.51 µM. compounds 2 and 8 showed weak pancreatic lipase inhibition activity. To our best knowledge, this is the first report of the chemical constituents in the genera Geoglossum and their bioactive activity.


Asunto(s)
Agaricales , Antineoplásicos , Ascomicetos , Humanos , Agaricales/química , Estructura Molecular , Antineoplásicos/química
20.
Food Res Int ; 159: 111552, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940778

RESUMEN

Due to the considerable increase in the prevalence of obesity, there is an increased interest in developing safe and effective anti-obesity treatments from fruits and vegetables. In this study, Ipomoea aquatica, commonly known as Kang Kong in Southeast Asia was first reported to contain potent pancreatic lipase (PL) inhibitors due to resin glycosides (RG). Ipomoea aquatica extract demonstrated a dose-dependent inhibitory activity against PL with an Orlistat equivalent (OE) value of 6.86 ± 0.51 × 10-4. In vitro lipolysis study showed that consuming RG in tandem with high-fat food (butter & salad dressing) was effective in delaying enzymatic fat digestion by inhibiting PL. Pre-incubation of PL with RG extract before substrate addition also significantly enhanced their inhibitory activity. However, RG was unstable when subjected to high heat treatments (90 °C). Overall, these results provided useful knowledge of RG as PL inhibitors for body weight management.


Asunto(s)
Ipomoea , Glicósidos/farmacología , Lípidos , Extractos Vegetales/farmacología , Resinas de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA