Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Signal Behav ; 18(1): 2217030, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37232366

RESUMEN

Rust infection results in stress volatile emissions, but due to the complexity of host-pathogen interaction and variations in innate defense and capacity to induce defense, biochemical responses can vary among host species. Fungal-dependent modifications in volatile emissions have been well documented in numerous host species, but how emission responses vary among host species is poorly understood. Our recent experiments demonstrated that the obligate biotrophic crown rust fungus (P. coronata) differently activated primary and secondary metabolic pathways in its primary host Avena sativa and alternate host Rhamnus frangula. In A. sativa, emissions of methyl jasmonate, short-chained lipoxygenase products, long-chained saturated fatty acid derivatives, mono- and sesquiterpenes, carotenoid breakdown products, and benzenoids were initially elicited in an infection severity-dependent manner, but the emissions decreased under severe infection and photosynthesis was almost completely inhibited. In R. frangula, infection resulted in low-level induction of stress volatile emissions, but surprisingly, in enhanced constitutive isoprene emissions, and even severely-infected leaves maintained a certain photosynthesis rate. Thus, the same pathogen elicited a much stronger response in the primary than in the alternate host. We argue that future work should focus on resolving mechanisms of different fungal tolerance and resilience among primary and secondary hosts.


Asunto(s)
Basidiomycota , Micosis , Compuestos Orgánicos Volátiles , Estrés Fisiológico , Fotosíntesis , Redes y Vías Metabólicas , Hojas de la Planta/metabolismo , Micosis/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
2.
J Math Biol ; 84(7): 62, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737104

RESUMEN

We present a quasi-steady state mechanistic derivation of the Monod bioreaction equation based upon a conceptual model involving aqueous phase diffusive transport of substrate towards a spherical microbe; transport of the substrate across its surface membrane; and reaction depleting the substrate within the microbe. The resulting Monod coefficients [Formula: see text] and [Formula: see text] are dependent upon substrate-species pairs and the mass transfer properties of the system. Two substrate transport scenarios are investigated: (1) a constant rate model that is a function of a constant flux across the surface of the microbe; and (2) a linear rate model that is the product of a constant transport velocity and the concentration of substrate in contact with the surface of the microbe. The model is verified and parameterized using benzene, toluene, and phenol depletion and biomass growth data obtained from Reardon et al. (Biotechnol Bioeng: 385-400, 2000). Calibration results indicate a normalized surface to bulk concentration ratio of nearly unity in all simulations for benzene, toluene, and phenol when paired with P. putida F1, implying that the process is not aqueous phase diffusion limited.


Asunto(s)
Benceno , Tolueno , Biodegradación Ambiental , Cinética , Nutrientes , Fenol
3.
Front Microbiol ; 12: 617151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767675

RESUMEN

Lake Cajititlán is a small, shallow, subtropical lake located in an endorheic basin in western Mexico. It is characterized by a strong seasonality of climate with pronounced wet and dry seasons and has been classified as a hypereutrophic lake. This eutrophication was driven by improperly treated sewage discharges from four municipal wastewater treatment plants (WWTPs) and by excessive agricultural activities, including the overuse of fertilizers that reach the lake through surface runoff during the rainy season. This nutrient rich runoff has caused algal blooms, which have led to anoxic or hypoxic conditions, resulting in large-scale fish deaths that have occurred during or immediately after the rainy season. This study investigated the changes in the phytoplankton community in Lake Cajititlán during the rainy season and the association between these changes and the physicochemical water quality and environmental parameters measured in the lake's basin. Planktothrix and Cylindrospermopsis were the dominant genera of the cyanobacterial community, while the Chlorophyceae, Chrysophyceae, and Trebouxiophyceae classes dominated the microalgae community. However, the results showed a significant temporal shift in the phytoplankton communities in Lake Cajititlán induced by the rainy season. The findings of this study suggest that significant climatic variations cause high seasonal surface runoff and rapid changes in the water quality (Chlorophyll-a, DO, NH4 +, and NO3 -) and in variations in the composition of the phytoplankton community. Finally, an alternation between phosphorus and nitrogen limitation was observed in Lake Cajititlán during the rainy season, clearly correlating to the presence of Planktothrix when the lake was limited by phosphorus and to the presence of Cylindrospermopsis when the lake was limited by nitrogen. The evidence presented in this study supports the idea that the death of fish in Lake Cajititlán could be mainly caused by anoxia, caused by rapid changes in water quality during the rainy season. Based on our review of the literature, this is the first study on the phytoplankton community in a subtropical lake during the rainy season using high throughput 16S rRNA and 18S rRNA amplicon sequencing.

4.
Proc Biol Sci ; 287(1940): 20202684, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33259760

RESUMEN

The geometric framework of nutrition predicts that populations restricted to a single imbalanced diet should evolve post-ingestive nutritional compensation mechanisms bringing the blend of assimilated nutrients closer to physiological optimum. The evolution of such nutritional compensation is thought to be mainly driven by the ratios of major nutrients rather than overall nutritional content of the diet. We report experimental evolution of divergence in post-ingestive nutritional compensation in populations of Drosophila melanogaster adapted to diets that contained identical imbalanced nutrient ratios but differed in total nutrient concentration. Larvae from 'Selected' populations maintained for over 200 generations on a nutrient-poor diet with a 1 : 13.5 protein : carbohydrate ratio showed enhanced assimilation of nitrogen from yeasts and reduced assimilation of carbon from sucrose than 'Control' populations evolved on a diet with the same nutrient ratio but fourfold greater nutrient concentration. Compared to the Controls, the Selected larvae also accumulated less triglycerides relative to protein. This implies that the Selected populations evolved a higher assimilation rate of amino acids from the poor imbalanced diet and a lower assimilation of carbohydrates than Controls. Thus, the evolution of nutritional compensation may be driven by changes in total nutrient abundance, even if the ratios of different nutrients remain unchanged.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Dieta , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Drosophila melanogaster , Ingestión de Alimentos , Larva , Nutrientes , Estado Nutricional , Sacarosa
5.
Water Res ; 186: 116317, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841931

RESUMEN

Although water produced by reverse osmosis (RO) filtration has low bacterial growth potential (BGP), post-treatment of RO permeate, which is necessary prior to distribution and human consumption, needs to be examined because of the potential re-introduction of nutrients/contaminants. In this study, drinking water produced from anaerobic groundwater by RO and post-treatment (ion exchange, calcite contactors, and aeration) was compared with that produced by conventional treatment comprising (dry) sand filtration, pellet softening, rapid sand filtration, activated carbon filtration, and UV disinfection. The multi-parametric assessment of biological stability included bacterial quantification, nutrient concentration and composition as well as bacterial community composition and diversity. Results showed that RO permeate remineralised in the laboratory has an extremely low BGP (50 ± 12 × 103 ICC/mL), which increased to 130 ± 10 × 103 ICC/mL after site post-treatment. Despite the negative impact of post-treatment, the BGP of the finished RO-treated water was >75% lower than that of conventionally treated water. Organic carbon limited bacterial growth in both RO-treated and conventionally treated waters. The increased BGP in RO-treated water was caused by the re-introduction of nutrients during post-treatment. Similarly, OTUs introduced during post-treatment, assigned to the phyla of Proteobacteria and Bacteroidetes (75-85%), were not present in the source groundwater. Conversely, conventionally treated water shared some OTUs with the source groundwater. It is clear that RO-based treatment achieved an extremely low BGP, which can be further improved by optimising post-treatment, such as using high purity calcite. The multi-parametric approach adopted in this study can offer insights into growth characteristics including limiting nutrients (why) and dominating genera growing (who), which is essential to manage microbiological water quality in water treatment and distribution systems.


Asunto(s)
Agua Potable , Agua Subterránea , Purificación del Agua , Filtración , Humanos , Membranas Artificiales , Ósmosis
6.
Water Res ; 185: 116236, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739700

RESUMEN

The effect of nutrients on phytoplankton biomass in lakes continues to be a subject of debate by aquatic scientists. However, determining whether or not chlorophyll a (CHL) is limited by phosphorus (P) and/or nitrogen (N) is rarely considered using a probabilistic method in studies of hundreds of lakes across broad spatial extents. Several studies have applied a unified CHL-nutrient relationship to determine nutrient limitation, but pose a risk of ecological fallacy because they neglect spatial heterogeneity in ecological contexts. To examine whether or not CHL is limited by P, N, or both nutrients in hundreds of lakes and across diverse ecological settings, a probabilistic machine learning method, Bayesian Network, was applied. Spatial heterogeneity in ecological context was accommodated by the probabilistic nature of the results. We analyzed data from 1382 lakes in 17 US states to evaluate the cause-effect relationships between CHL and nutrients. Observations of CHL, total phosphorus (TP), and total nitrogen (TN) were discretized into three trophic states (oligo-mesotrophic, eutrophic, and hypereutrophic) to train the model. We found that although both nutrients were related to CHL trophic state, TP was more related to CHL than TN, especially under oligo-mesotrophic and eutrophic CHL conditions. However, when the CHL trophic state was hypereutrophic, both TP and TN were important. These results provide additional evidence that P-limitation is more likely under oligo-mesotrophic or eutrophic CHL conditions and that co-limitation of P and N occurs under hypereutrophic CHL conditions. We also found a decreasing pattern of the TN/TP ratio with increasing CHL concentrations, which might be a key driver for the role change of nutrients. Previous work performed at smaller scales support our findings, indicating potential for extension of our findings to other regions. Our findings enhance the understanding of nutrient limitation at macroscales and revealed that the current debate on the limiting nutrient might be caused by failure to consider CHL trophic state. Our findings also provide prior information for the site-specific eutrophication management of unsampled or data-limited lakes.


Asunto(s)
Lagos , Teorema de Bayes , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis
7.
AoB Plants ; 12(3): plaa021, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32537118

RESUMEN

A general relationship between the nitrogen (N) and phosphorus (P) content of all plant organs (e.g. leaf, stem, and root) is hypothesized to exist according to whole-plant economics spectrum (PES) theory, but the evidence supporting these expected patterns remains scarce. We measured the N and P content of the leaves, twigs and fine roots of 64 species in three different forest communities along an elevational gradient (evergreen broad-leaved forest, 1319 m a.s.l., coniferous and broad-leaved mixed forest, 1697 m a.s.l., and deciduous forest, 1818 m a.s.l.) in the Wuyishan National Nature Reserve, southeastern China. The scaling relationship between the N and P content and the linear regression relationship between the N:P ratio and N and P content were analysed. The leaf N and P content was significantly higher at the high-elevation site than at the low- or middle-elevation sites (P < 0.001). The N and P content followed a power-law relationship with similar scaling slopes between organs. The N (common slope, 1.13) and P (common slope, 1.03) content isometrically covaried among leaves, twigs and roots. The scaling exponents of the N-P relationship were not significantly different from 1.0 in all organs, with a common slope of 1.08. The scaling constants of N-P decreased significantly (P < 0.05) from the highest value in fine roots (ß = 1.25), followed by leaves (ß = 1.17), to the lowest value in twigs (ß = 0.88). Standardized major axis (SMA) analyses and comparisons of 95 % confidence intervals also showed that the numerical values of the scaling slopes and the scaling constants did not differ regardless of elevation. The N content, but not the P content, accounted for a large proportion of the variation in the N:P ratio in leaves (N:P and N: r 2 = 0.31, F = 33.36, P < 0.001) and fine roots (N:P and N: r 2 = 0.15, F = 10.65, P < 0.05). In contrast, the N:P ratio was significantly related to both the N and P content in the twigs (N:P and N: r 2 = 0.20, F = 17.86, P < 0.001; N:P and P: r 2 = 0.34, F = 35.03, P < 0.001, respectively). Our results indicate that different organs of subtropical woody plants share a similar isometric scaling relationship between their N and P content, providing partial support for the PES hypothesis. Moreover, the effects of the N and P content on the N:P ratio differ between metabolic organs (leaves and fine roots) and structural organs (twigs), elucidating the stoichiometric regulatory mechanism of different organs.

8.
MethodsX ; 7: 100807, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195131

RESUMEN

The total phosphorus analyte (TP) has a long history of use in monitoring and regulatory applications relating to management of cultural eutrophication in freshwaters. It has become apparent, however, that the fraction of the TP analyte ultimately available to support algal growth varies significantly spatially (within a system), seasonally, and among systems. The algal bioassay methods described here provide an approach for determining the bioavailable fraction of the three operationally defined components of TP: soluble reactive phosphorus (SRP), dissolved organic phosphorus (DOP), and particulate phosphorus (PP) in effluents and tributaries discharging to lakes and reservoirs. Application of the technique facilitates a quantitative ranking and targeting of bioavailable phosphorus sources for management.•One congruent method to fractionate particulate and soluble phosphorus (found in aquatic samples) into bioavailable and unavailable fractions was developed based on compilation, adaptation and expansion of two methods from the late 1970s and early 1980s.•Detailed descriptions for culturing phosphorus-starved algae, sub-sampling schedules, kinetics determination, and data presentation are provided•Reproducibility is demonstrated by replication and closure of a mass balance on phosphorus.

9.
Acta sci., Biol. sci ; 37(3): 309-318, jul.-set. 2015. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-847247

RESUMEN

The Carlson's (1977) Trophic State Index (TSI) is a widely employed tool to estimate the degree of eutrophication in a reservoir. In Brazil, the need of a classification system that would take into account regional characteristics employed adjusted indexes generated by data from reservoirs in the southeastern region of the country. Current research compares responses for Carlson's TSI (1977) and its derivations for Brazilian reservoirs from data collected in the Pereira de Miranda Reservoir (State of Ceará, Brazil), and analyzes the influence of local conditions on results and their applicability to reservoirs in the semiarid region. TSIs were calculated by data on total phosphorus, chlorophyll a and water transparency. The reservoir was estimated as mesotrophic based on the chlorophyll a variable, and between eutrophic and hyper-eutrophic when based on total phosphorus data and water transparency. Results showed the need to consider intrinsic factors in the discussion on the applicability of TSIs to reservoirs in the semiarid region since the peculiar hydro-climatic conditions and morphometric characteristics make them even more vulnerable to disturbance agents, such as winds which have a significant influence on processes that determine the trophic state.


O índice de estado trófico (IET) de Carlson (1977) é uma ferramenta muito utilizada para estimar o grau de eutrofização de reservatórios. No Brasil, a necessidade de um sistema classificatório que levasse em consideração as peculiaridades regionais resultou em derivações do índice original. O objetivo desta pesquisa foi comparar as respostas do IET de Carlson (clima temperado) e dos índices modificados para reservatórios do sudeste brasileiro (clima subtropical) originadas para dados do açude Pereira de Miranda e analisar a influência das condições locais sobre esses resultados, discutindo-se a sua aplicabilidade para a região semiárida do Brasil. Os índices de estado trófico foram calculados a partir dos valores de clorofila a, fósforo total e transparência da água. O estado trófico do açude foi estimado como mesotrófico, com base na variável clorofila a, e entre eutrófico e hipereutrófico, com os dados de fósforo total e de transparência da água. A partir dos resultados, observa-se a necessidade de considerar fatores intrínsecos na discussão sobre a aplicabilidade desses índices para os reservatórios do semiárido, especialmente quando as variáveis hidroclimáticas e morfométricas os tornam ainda mais vulneráveis a distúrbios, a exemplo do vento, que tem influência significativa sobre os processos que determinam o estado trófico


Asunto(s)
Clorofila , Eutrofización , Nitrógeno , Fósforo , Reservorios de Agua , Zona Semiárida , Niveles Tróficos
10.
PeerJ ; 3: e841, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25802810

RESUMEN

We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.

11.
Mar Pollut Bull ; 77(1-2): 274-81, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24139642

RESUMEN

Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7±34.6 mg m(-2)) and during the rainy season for macroalgae at site 4 (296.0±82.4 g m(-2)). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m(-2) and the macroalgal biomass between 1 and 296.0 g m(-2). The bulk biomass (phytoplankton+macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.


Asunto(s)
Fitoplancton/crecimiento & desarrollo , Algas Marinas/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Biomasa , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , México , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/clasificación , Algas Marinas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA