Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Sci Rep ; 14(1): 12770, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834608

RESUMEN

Nonlinear microscopy has become an invaluable tool for biological imaging, offering high-resolution visualization of biological specimens. In this manuscript, we present the application of a spectral phase measurement technique, i 2 PIE, to compress broad-bandwidth supercontinuum pulses for two-photon excitation fluorescence light-sheet fluorescence microscopy. The results demonstrated a significant improvement in the two-photon excitation response achieved. We also showed that the implementation of i 2 PIE allowed for enhanced image contrasts when compared to conventional compression techniques, with i 2 PIE producing an image contrast improvement over conventional methods by over 50%.

2.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38712306

RESUMEN

Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.

3.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38610265

RESUMEN

Light Sheet Fluorescence Microscopy (LSFM) has emerged as a valuable tool for neurobiologists, enabling the rapid and high-quality volumetric imaging of mice brains. However, inherent artifacts and distortions introduced during the imaging process necessitate careful enhancement of LSFM images for optimal 3D reconstructions. This work aims to correct images slice by slice before reconstructing 3D volumes. Our approach involves a three-step process: firstly, the implementation of a deblurring algorithm using the work of K. Becker; secondly, an automatic contrast enhancement; and thirdly, the development of a convolutional denoising auto-encoder featuring skip connections to effectively address noise introduced by contrast enhancement, particularly excelling in handling mixed Poisson-Gaussian noise. Additionally, we tackle the challenge of axial distortion in LSFM by introducing an approach based on an auto-encoder trained on bead calibration images. The proposed pipeline demonstrates a complete solution, presenting promising results that surpass existing methods in denoising LSFM images. These advancements hold potential to significantly improve the interpretation of biological data.

4.
Diabetologia ; 67(6): 1066-1078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630142

RESUMEN

AIMS/HYPOTHESIS: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS: We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS: We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION: This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Imagenología Tridimensional , Páncreas , Humanos , Páncreas/embriología , Páncreas/citología , Páncreas/metabolismo , Diferenciación Celular/fisiología , Femenino , Células Madre/citología , Células Madre/metabolismo , Embarazo , Insulina/metabolismo
5.
Small Methods ; : e2301715, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461540

RESUMEN

Expansion Microscopy (ExM) and Light-Sheet Fluorescence Microscopy (LSFM) are forefront imaging techniques that enable high-resolution visualization of biological specimens. ExM enhances nanoscale investigation using conventional fluorescence microscopes, while LSFM offers rapid, minimally invasive imaging over large volumes. This review explores the joint advancements of ExM and LSFM, focusing on the excellent performance of the integrated modality obtained from the combination of the two, which is refer to as ExLSFM. In doing so, the chemical processes required for ExM, the tailored optical setup of LSFM for examining expanded samples, and the adjustments in sample preparation for accurate data collection are emphasized. It is delve into various specimen types studied using this integrated method and assess its potential for future applications. The goal of this literature review is to enrich the comprehension of ExM and LSFM, encouraging their wider use and ongoing development, looking forward to the upcoming challenges, and anticipating innovations in these imaging techniques.

6.
Methods Mol Biol ; 2772: 323-335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411826

RESUMEN

The recent significant progress in developmental bio-imaging of live multicellular organisms has been greatly facilitated by the development of light sheet fluorescence microscopy (LSFM). Both commercial and custom LSFM systems offer the best means for long-term rapid data collection over a wide field of view at single-cell resolution. This is thanks to the low light exposure required for imaging and consequent limited photodamage to the biological sample, and the development of custom holders and mounting techniques that allow for specimens to be imaged in near-normal physiological conditions. This method has been successfully applied to plant cell biology and is currently seen as one of the most efficient techniques for 3D time-lapse imaging for quantitative studies. LSFM allows one to capture and quantify dynamic processes across various levels, from plant subcellular compartments to whole cells, tissues, and entire plant organs. Here we present a method to carry out LSFM on Arabidopsis leaves expressing fluorescent markers targeted to the ER. We will focus on a protocol to mount the sample, test the phototoxicity of the LSFM system, set up a LSFM experiment, and monitor the dynamics of the ER during heat shock.


Asunto(s)
Arabidopsis , Microscopía Fluorescente , Colorantes , Recolección de Datos , Respuesta al Choque Térmico
7.
Neurophotonics ; 11(Suppl 1): S11503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38322247

RESUMEN

Significance: Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to in vivo brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics. Here, we propose a microendoscope consisting of a light-sheet neural probe packaged together with miniaturized fluorescence collection optics based on an image fiber bundle for lensless, light-field, computational fluorescence imaging. Aim: Foundry-fabricated, silicon-based, light-sheet neural probes can be packaged together with commercially available image fiber bundles to form microendoscopes for light-sheet light-field fluorescence imaging at depth in brain tissue. Approach: Prototype microendoscopes were developed using light-sheet neural probes with five addressable sheets and image fiber bundles. Fluorescence imaging with the microendoscopes was tested with fluorescent beads suspended in agarose and fixed mouse brain tissue. Results: Volumetric light-sheet light-field fluorescence imaging was demonstrated using the microendoscopes. Increased imaging depth and enhanced reconstruction accuracy were observed relative to epi-illumination light-field imaging using only a fiber bundle. Conclusions: Our work offers a solution toward volumetric fluorescence imaging of brain tissue with a compact size and high contrast. The proof-of-concept demonstrations herein illustrate the operating principles and methods of the imaging approach, providing a foundation for future investigations of photonic neural probe enabled microendoscopes for deep-brain fluorescence imaging in vivo.

8.
Islets ; 16(1): 2298518, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38267218

RESUMEN

Pancreatic islet transplantation is a promising treatment for type 1 diabetes, but the survival and function of transplanted islets are hindered by the loss of extracellular matrix (ECM) during islet isolation and by low oxygenation upon implantation. This study aimed to evaluate the impact of hypoxia on ECM using a cutting-edge imaging approach based on tissue clearing and 3D microscopy. Human and rat islets were cultured under normoxic (O2 21%) or hypoxic (O2 1%) conditions. Immunofluorescence staining targeting insulin, glucagon, CA9 (a hypoxia marker), ECM proteins (collagen 4, fibronectin, laminin), and E-cadherin (intercellular adhesion protein) was performed on fixed whole islets. The cleared islets were imaged using Light Sheet Fluorescence Microscopy (LSFM) and digitally analyzed. The volumetric analysis of target proteins did not show significant differences in abundance between the experimental groups. However, 3D projections revealed distinct morphological features that differentiated normoxic and hypoxic islets. Under normoxic conditions, ECM could be found throughout the islets. Hypoxic islets exhibited areas of scattered nuclei and central clusters of ECM proteins, indicating central necrosis. E-cadherin was absent in these areas. Our results, demonstrating a diminution of islets' functional mass in hypoxia, align with the functional decline observed in transplanted islets experiencing low oxygenation after grafting. This study provides a methodology combining tissue clearing, multiplex immunofluorescence, Light Sheet Fluorescence Microscopy, and digital image analysis to investigate pancreatic islet morphology. This 3D approach allowed us to highlight ECM organizational changes during hypoxia from a morphological perspective.


Asunto(s)
Islotes Pancreáticos , Humanos , Animales , Ratas , Microscopía Fluorescente , Matriz Extracelular , Hipoxia , Proteínas de la Matriz Extracelular , Cadherinas
9.
Adv Mater ; 36(8): e2306258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822216

RESUMEN

Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. 3D bioprinting stands out for its design flexibility and reproducibility. Here, an integrated fluorescent light sheet bioprinting and imaging system is presented that combines high printing speed (0.66 mm3 /s) and resolution (9 µm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering.


Asunto(s)
Bioimpresión , Animales , Humanos , Bioimpresión/métodos , Reproducibilidad de los Resultados , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Hidrogeles , Andamios del Tejido
10.
Microbiol Spectr ; 12(1): e0246923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009950

RESUMEN

IMPORTANCE: We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , SARS-CoV-2 , Pulmón , Macrófagos , Análisis Espacio-Temporal
11.
Curr Protoc ; 3(11): e925, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934124

RESUMEN

The MHC II-EGFP knock-in mouse model enables us to visualize and track MHC-II-expressing cells in vivo by expressing enhanced green fluorescent protein (EGFP) fused to the MHC class II molecule under the MHC II beta chain promoter. Using this model, we can easily identify MHC-II-expressing cells, including dendritic cells, B cells, macrophages, and ILC3s, which play a key role as antigen-presenting cells (APCs) for CD4+ T cells. In addition, we can also precisely identify and analyze APC-containing tissues and organs. Even after fixation, EGFP retains its fluorescence, so this model is suitable for immunofluorescence studies, facilitating an unbiased characterization of the histological context, especially with techniques such as light-sheet fluorescence microscopy. Furthermore, the MHC II-EGFP knock-in mouse model is valuable for studying the molecular mechanisms of MHC II gene regulation and expression by making it possible to correlate MHC II expression (MHC II-EGFP) with surface fraction through antibody detection, thereby shedding light on the intricate regulation of MHC II expression. Overall, this model is an essential asset for quantitative and systems immunological research, providing insights into immune cell dynamics and localization, with a tool for precise cell identification and with the ability to study MHC II gene regulation, thus furthering the understanding of immune responses and underlying mechanisms © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterization of antigen-specific MHC II loading compartment tubulation toward the immunological synapse Basic Protocol 2: Characterization of overall versus surface MHC II expression Basic Protocol 3: Identification and preparation of the lymphoid organs Basic Protocol 4: Quantification of APC content in lymphoid organs by fluorescence stereomicroscopy Basic Protocol 5: Quantification and measurement of intestinal lymphoid tissue by light-sheet fluorescence stereomicroscopy Basic Protocol 6: Visualization of corneal APCs Basic Protocol 7: Quantification of MHC II+ cells in maternal milk by flow cytometry Support Protocol 1: Cell surface staining and flow cytometry analysis of spleen mononuclear cells.


Asunto(s)
Células Presentadoras de Antígenos , Linfocitos B , Animales , Ratones , Proteínas Fluorescentes Verdes , Membrana Celular , Modelos Animales de Enfermedad
12.
Methods Protoc ; 6(6)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37987355

RESUMEN

Whole-brain imaging is important for understanding brain functions through deciphering tissue structures, neuronal circuits, and single-neuron tracing. Thus, many clearing methods have been developed to acquire whole-brain images or images of three-dimensional thick tissues. However, there are several limitations to imaging whole-brain volumes, including long image acquisition times, large volumes of data, and a long post-image process. Based on these limitations, many researchers are unsure about which light microscopy is most suitable for imaging thick tissues. Here, we compared fast-confocal microscopy with light-sheet fluorescence microscopy for whole-brain three-dimensional imaging, which can acquire images the fastest. To compare the two types of microscopies for large-volume imaging, we performed tissue clearing of a whole mouse brain, and changed the sample chamber and low- magnification objective lens and modified the sample holder of a light-sheet fluorescence microscope. We found out that light-sheet fluorescence microscopy using a 2.5× objective lens possesses several advantages, including saving time, large-volume image acquisitions, and high Z-resolution, over fast-confocal microscopy, which uses a 4× objective lens. Therefore, we suggest that light-sheet fluorescence microscopy is suitable for whole mouse brain imaging and for obtaining high-resolution three-dimensional images.

13.
Exp Eye Res ; 237: 109674, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838300

RESUMEN

Eye development and function rely on precise establishment, regression and maintenance of its many sub-vasculatures. These crucial vascular properties have been extensively investigated in eye development and disease utilizing genetic and experimental mouse models. However, due to technical limitations, individual studies have often restricted their focus to one specific sub-vasculature. Here, we apply a workflow that allows for visualization of complete vasculatures of mouse eyes of various developmental stages. Through tissue depigmentation, immunostaining, clearing and light-sheet fluorescence microscopy (LSFM) entire vasculatures of the retina, vitreous (hyaloids) and uvea were simultaneously imaged at high resolution. In silico dissection provided detailed information on their 3D architecture and interconnections. By this method we describe successive remodeling of the postnatal iris vasculature, involving sprouting and pruning, following its disconnection from the embryonic feeding hyaloid vasculature. In addition, we demonstrate examples of conventional and LSFM-mediated analysis of choroidal neovascularization after laser-induced wounding, showing added value of the presented workflow in analysis of modelled eye disease. These advancements in visualization and analysis of the respective eye vasculatures in development and complex eye disease open for novel observations of their functional interplay at a whole-organ level.


Asunto(s)
Oftalmopatías , Retina , Ratones , Animales , Microscopía Fluorescente/métodos
14.
Biol Open ; 12(10)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37855381

RESUMEN

For diploid model organisms, the actual transgenesis processes require subsequent periods of transgene management, which are challenging in emerging model organisms due to the lack of suitable methodology. We used the red flour beetle Tribolium castaneum, a stored-grain pest, to perform a comprehensive functional evaluation of our AClashOfStrings (ACOS) and the combined AGameOfClones/AClashOfStrings (AGOC/ACOS) vector concepts, which use four clearly distinguishable markers to provide full visual control over up to two independent transgenes. We achieved comprehensive statistical validation of our approach by systematically creating seventeen novel single and double homozygous sublines intended for fluorescence live imaging, including several sublines in which the microtubule cytoskeleton is labeled. During the mating procedures, we genotyped more than 20,000 individuals in less than 80 working hours, which corresponds to about 10 to 15 s per individual. We also confirm the functionality of our combined concept in two double transgene special cases, i.e. integration of both transgenes in close proximity on the same chromosome and integration of one transgene on the X allosome. Finally, we discuss our vector concepts regarding performance, genotyping accuracy, throughput, resource saving potential, fluorescent protein choice, modularity, adaptation to other diploid model organisms and expansion capability.


Asunto(s)
Tribolium , Animales , Animales Modificados Genéticamente , Homocigoto , Organismos Modificados Genéticamente , Genotipo , Tribolium/genética , Tribolium/metabolismo
15.
Sci Total Environ ; 902: 165947, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543337

RESUMEN

Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 µm), PM10 (d ~10 µm), and ultrafine particles (UFP: d < 0.1 µm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Humanos , Animales , Pez Cebra , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Microscopía Fluorescente/métodos , Material Particulado/toxicidad
16.
Adv Virus Res ; 116: 89-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37524483

RESUMEN

Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.


Asunto(s)
Imagenología Tridimensional , Virosis , Humanos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Virosis/diagnóstico por imagen
17.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37305850

RESUMEN

Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.

18.
Neuropharmacology ; 238: 109637, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37391028

RESUMEN

Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. However, Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4_C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Ponzoñas , Ratones , Animales , Exenatida , Receptor del Péptido 1 Similar al Glucagón/agonistas , Ponzoñas/farmacología , Ponzoñas/química , Péptidos/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
19.
Methods Mol Biol ; 2660: 311-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191807

RESUMEN

Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.


Asunto(s)
Organoides , Medicina Regenerativa , Humanos , Células Madre , Organogénesis , Análisis Espacial
20.
Medicina (Kaunas) ; 59(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37109631

RESUMEN

Orofacial granulomatosis (OFG) represents a heterogeneous group of rare orofacial diseases. When affecting gingiva, it appears as a chronic soft tissue inflammation, sometimes combined with the enlargement and swelling of other intraoral sites, including the lips. Gingival biopsy highlights noncaseating granulomatous inflammation, similar to that observed in Crohn's disease and sarcoidosis. At present, the etiology of OFG remains uncertain, although the involvement of the genetic background and environmental triggers, such as oral conditions or therapies (including orthodontic treatment), has been suggested. The present study reports the results of a detailed clinical and 2D/3D microscopy investigation of a case of gingival orofacial granulomatosis in an 8-year-old male patient after orthodontic therapy. Intraoral examination showed an erythematous hyperplasia of the whole gingiva with a granular appearance occurring a few weeks after the installation of a quad-helix. Peri-oral inspection revealed upper labial swelling and angular cheilitis. General investigations did not report ongoing extra-oral disturbances with the exception of a weakly positive anti-Saccharomyces cerevicae IgG auto-antibody. Two- and three-dimensional microscopic investigations confirmed the presence of gingival orofacial granulomatosis. Daily corticoid mouthwashes over a period of 3 months resulted in a slight improvement in clinical signs, despite an intermittent inflammation recurrence. This study brings new insights into the microscopic features of gingival orofacial granulomatosis, thus providing key elements to oral practitioners to ensure accurate and timely OFG diagnosis. The accurate diagnosis of OFG allows targeted management of symptoms and patient monitoring over time, along with early detection and treatment of extra-oral manifestations, such as Crohn's disease.


Asunto(s)
Enfermedad de Crohn , Granulomatosis Orofacial , Masculino , Humanos , Niño , Granulomatosis Orofacial/etiología , Granulomatosis Orofacial/diagnóstico , Granulomatosis Orofacial/tratamiento farmacológico , Enfermedad de Crohn/complicaciones , Encía , Microscopía , Inflamación/complicaciones , Edema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA