Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurol Surg B Skull Base ; 85(4): 340-346, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966297

RESUMEN

Introduction Pituitary neuroendocrine tumors (PitNETs) are rare skull base tumors which can impart significant disability owing to their locally invasive potential. To date, the gamut of PitNET subtypes remains ill-understood at the ligand-receptor (LR) interactome level, potentially limiting therapeutic options. Here, we present findings from in silico analysis of LR complexes formed by PitNETs with clinical presentations of acromegaly, Cushing's disease, high prolactin production, and without symptoms of hormone hypersecretion. Methods Previously published PitNET gene expression data was acquired from ArrayExpress. These data represented all secretion types. LR interactions were analyzed via a crosstalk score approach. Results Cortisol (CORT) ligand was significantly involved in tumor-to-tumor signaling across all PitNET subtypes but prolactinomas, which evidenced active CORT depletion. Likewise, CCL25 ligand was implicated in 20% of the top LR complex interactions along the tumor-to-stroma signaling axis, but silent PitNETs reported unique depletion of the CCL25 ligand. Along the stroma-to-tumor signaling axis, all clinical PitNET subtypes enriched stromal vasoactive intestinal polypeptide ligand interactions with tumor secretin receptor. All clinical PitNET subtypes enriched stromal DEFB103B (human ß-defensin 103B) ligand interactions with stromal chemokine receptors along the stroma-to-stroma signaling axis. In PitNETs causing Cushing's disease, immune checkpoint ligand CD274 reported high stromal expression, and prolactinomas reported low stromal expression. Moreover, prolactinomas evidenced distinctly high stromal expression of immune-exhausted T cell response marker IL10RA compared with other clinical subtypes. Conclusion Relative crosstalk score analysis revealed a great diversity of LR complex interactions across clinical PitNET subtypes and between solid tumor compartments. More data are needed to validate these findings and exact clinical importance.

2.
Comput Biol Chem ; 112: 108127, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38870559

RESUMEN

Spatial transcriptomics, a groundbreaking field in cellular biology, faces the challenge of effectively deciphering complex spatial-temporal gene expression patterns. Traditional data analysis methods often fail to capture the intricate nuances of this data, limiting the depth of understanding in spatial distribution and gene interactions. In response, we present Spatial-Temporal Patterns for Downstream Analysis (STPDA), a sophisticated computational framework tailored for spatial transcriptomic data analysis. STPDA leverages high-resolution mapping to bridge the gap between genomics and histopathology, offering a comprehensive perspective on the spatial dynamics of gene expression within tissues. This approach enables a view of cellular function and organization, marking a paradigm shift in our comprehension of biological systems. By employing Autoregressive Moving Average (ARMA) and Long Short-Term Memory (LSTM) models, STPDA effectively deciphers both global and local spatio-temporal dynamics in cellular environments. This integration of spatial-temporal patterns for downstream analysis offers a transformative approach to spatial transcriptomics data analysis. STPDA excels in various single-cell analytical tasks, including the identification of ligand-receptor interactions and cell type classification. Its ability to harness spatial-temporal patterns not only matches but frequently surpasses the performance of existing state-of-the-art methods. To ensure widespread usability and impact, we have encapsulated STPDA in a scalable and accessible Python package, addressing single-cell tasks through advanced spatial-temporal pattern analysis. This development promises to enhance our understanding of cellular biology, offering novel insights and therapeutic strategies, and represents a substantial advancement in the field of spatial transcriptomics.


Asunto(s)
Transcriptoma , Humanos , Perfilación de la Expresión Génica , Análisis Espacio-Temporal , Biología Computacional
3.
Cell Rep Methods ; 4(4): 100758, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38631346

RESUMEN

In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.


Asunto(s)
Comunicación Celular , Programas Informáticos , Comunicación Celular/fisiología , Humanos , Biología Computacional/métodos , Análisis de la Célula Individual/métodos
4.
Clin Transl Med ; 14(3): e1594, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38426403

RESUMEN

BACKGROUND: Papillary thyroid carcinoma (PTC) is the most common malignant endocrine tumour, and its incidence and prevalence are increasing considerably. Cellular heterogeneity in the tumour microenvironment is important for PTC prognosis. Spatial transcriptomics is a powerful technique for cellular heterogeneity study. METHODS: In conjunction with a clinical pathologist identification method, spatial transcriptomics was employed to characterise the spatial location and RNA profiles of PTC-associated cells within the tissue sections. The spatial RNA-clinical signature genes for each cell type were extracted and applied to outlining the distribution regions of specific cells on the entire section. The cellular heterogeneity of each cell type was further revealed by ContourPlot analysis, monocle analysis, trajectory analysis, ligand-receptor analysis and Gene Ontology enrichment analysis. RESULTS: The spatial distribution region of tumour cells, typical and atypical follicular cells (FCs and AFCs) and immune cells were accurately and comprehensively identified in all five PTC tissue sections. AFCs were identified as a transitional state between FCs and tumour cells, exhibiting a higher resemblance to the latter. Three tumour foci were shared among all patients out of the 13 observed. Notably, tumour foci No. 2 displayed elevated expression levels of genes associated with lower relapse-free survival in PTC patients. We discovered key ligand-receptor interactions, including LAMB3-ITGA2, FN1-ITGA3 and FN1-SDC4, involved in the transition of PTC cells from FCs to AFCs and eventually to tumour cells. High expression of these patterns correlated with reduced relapse-free survival. In the tumour immune microenvironment, reduced interaction between myeloid-derived TGFB1 and TGFBR1 in tumour focus No. 2 contributed to tumourigenesis and increased heterogeneity. The spatial RNA-clinical analysis method developed here revealed prognosis-associated cellular heterogeneity in the PTC microenvironment. CONCLUSIONS: The occurrence of tumour foci No. 2 and three enhanced ligand-receptor interactions in the AFC area/tumour foci reduced the relapse-free survival of PTC patients, potentially leading to improved prognostic strategies and targeted therapies for PTC patients.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Ligandos , Microambiente Tumoral/genética , Recurrencia Local de Neoplasia , Perfilación de la Expresión Génica , Pronóstico , ARN
5.
Biosci Rep ; 43(12)2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131305

RESUMEN

The chemokine receptor CXCR4 has become an attractive therapeutic target for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. A wide variety of synthetic antagonists of CXCR4 have been developed and studied for a growing list of clinical applications. To compare the biological effects of different antagonists on CXCR4 functions and their common and/or distinctive molecular interactions with the receptor, we conducted head-to-head comparative cell-based biological and mutational analyses of the interactions with CXCR4 of eleven reported antagonists, including HC4319, DV3, DV1, DV1 dimer, V1, vMIP-II, CVX15, LY2510924, IT1t, AMD3100, and AMD11070 that were representative of different structural classes of D-peptides, L-peptide, natural chemokine, cyclic peptides, and small molecules. The results were rationalized by molecular modeling of CXCR4-antagonist interactions from which the common as well as different receptor binding sites of these antagonists were derived, revealing a number of important residues such as W94, D97, H113, D171, D262, and E288, mostly of negative charge. To further examine this finding, we designed and synthesized new antagonistic analogs by adding positively charged residues Arg to a D-peptide template to enhance the postulated charge-charge interactions. The newly designed analogs displayed significantly increased binding to CXCR4, which supports the notion that negatively charged residues of CXCR4 can engage in interactions with moieties of positive charge of the antagonistic ligands. The results from these mutational, modeling and new analog design studies shed new insight into the molecular mechanisms of different types of antagonists in recognizing CXCR4 and guide the development of new therapeutic agents.


Asunto(s)
Péptidos , Transducción de Señal , Péptidos/genética , Péptidos/farmacología , Péptidos/química , Modelos Moleculares , Receptores de Quimiocina , Receptores CXCR4/genética
6.
Atherosclerosis ; 380: 117200, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37619408

RESUMEN

BACKGROUND AND AIMS: Heterogeneous high-density lipoprotein (HDL) particles, which can contain hundreds of proteins, affect human health and disease through dynamic molecular interactions with cell surface proteins. How HDL mediates its long-range signaling functions and interactions with various cell types is largely unknown. Due to the complexity of HDL, we hypothesize that multiple receptors engage with HDL particles resulting in condition-dependent receptor-HDL interaction clusters at the cell surface. METHODS: Here we used the mass spectrometry-based and light-controlled proximity labeling strategy LUX-MS in a discovery-driven manner to decode HDL-receptor interactions. RESULTS: Surfaceome nanoscale organization analysis of hepatocytes and endothelial cells using LUX-MS revealed that the previously known HDL-binding protein scavenger receptor B1 (SCRB1) is embedded in a cell surface protein community, which we term HDL synapse. Modulating the endothelial HDL synapse, composed of 60 proteins, by silencing individual members, showed that the HDL synapse can be assembled in the absence of SCRB1 and that the members are interlinked. The aminopeptidase N (AMPN) (also known as CD13) was identified as an HDL synapse member that directly influences HDL uptake into the primary human aortic endothelial cells (HAECs). CONCLUSIONS: Our data indicate that preformed cell surface residing protein complexes modulate HDL function and suggest new theragnostic opportunities.


Asunto(s)
Células Endoteliales , Sinapsis , Humanos , Proteínas de la Membrana , Aorta , Lipoproteínas HDL
7.
Front Immunol ; 14: 1155740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228611

RESUMEN

Mast cells play an important role in disease pathogenesis by secreting immunomodulatory molecules. Mast cells are primarily activated by the crosslinking of their high affinity IgE receptors (FcεRI) by antigen bound immunoglobulin (Ig)E antibody complexes. However, mast cells can also be activated by the mas related G protein-coupled receptor X2 (MRGPRX2), in response to a range of cationic secretagogues, such as substance P (SP), which is associated with pseudo-allergic reactions. We have previously reported that the in vitro activation of mouse mast cells by basic secretagogues is mediated by the mouse orthologue of the human MRGPRX2, MRGPRB2. To further elucidate the mechanism of MRGPRX2 activation, we studied the time-dependent internalization of MRGPRX2 by human mast cells (LAD2) upon stimulation with the neuropeptide SP. In addition, we performed computational studies to identify the intermolecular forces that facilitate ligand-MRGPRX2 interaction using SP. The computational predictions were tested experimentally by activating LAD2 with SP analogs, which were missing key amino acid residues. Our data suggest that mast cell activation by SP causes internalization of MRGPRX2 within 1 min of stimulation. Hydrogen bonds (h-bonds) and salt bridges govern the biding of SP to MRGPRX2. Arg1 and Lys3 in SP are key residues that are involved in both h-bonding and salt bridge formations with Glu164 and Asp184 of MRGPRX2, respectively. In accordance, SP analogs devoid of key residues (SP1 and SP2) failed to activate MRGPRX2 degranulation. However, both SP1 and SP2 caused a comparable release of chemokine CCL2. Further, SP analogs SP1, SP2 and SP4 did not activate tumor necrosis factor (TNF) production. We further show that SP1 and SP2 limit the activity of SP on mast cells. The results provide important mechanistic insight into the events that result in mast cell activation through MRGPRX2 and highlight the important physiochemical characteristics of a peptide ligand that facilitates ligand-MRGPRX2 interactions. The results are important in understanding activation through MRGPRX2, and the intermolecular forces that govern ligand-MRGPRX2 interaction. The elucidation of important physiochemical properties within a ligand that are needed for receptor interaction will aid in designing novel therapeutics and antagonists for MRGPRX2.


Asunto(s)
Mastocitos , Sustancia P , Humanos , Animales , Ratones , Sustancia P/metabolismo , Secretagogos/metabolismo , Ligandos , Inmunoglobulina E/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Neuropéptido/metabolismo
8.
Front Oncol ; 13: 1170942, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152010

RESUMEN

Introduction: Currently, programmed cell death-1 (PD-1)-targeted treatment is ineffective for a sizable minority of patients, and drug resistance still cannot be overcome. Methods: To explore the mechanisms of immunotherapy and identify new therapeutic opportunities in lung adenocarcinoma (LUAD), data from patients who did and did not respond to the anti-PD-1 treatment were evaluated using single-cell RNA sequencing, and bulk RNA sequencing were collected. Results: We investigated the gene expression that respond or not respond to immunotherapy in diverse cell types and revealed transcriptional characteristics at the single-cell level. To ultimately explore the molecular response or resistance to anti-PD-1 therapy, cell-cell interactions were carried out to identify the different LRIs (ligand-receptor interactions) between untreated patients vs. no-responders, untreated patients vs. responders, and responders vs. non-responders. Next, two molecular subgroups were proposed based on 73 LRI genes, and subtype 1 had a poor survival status and was likely to be the immunosuppressive tumor subtype. Furthermore, based on the LASSO Cox regression analysis results, we found that TNFSF13, AXL, KLRK1, FAS, PROS1, and CDH1 can be distinct prognostic biomarkers, immune infiltration levels, and responses to immunotherapy in LUAD. Discussion: Altogether, the effects of immunotherapy were connected to LRIs scores, indicating that potential medications targeting these LRIs could contribute to the clinical benefit of immunotherapy. Our integrative omics analysis revealed the mechanisms underlying the anti-PD-1 therapy response and offered abundant clues for potential strategies to improve precise diagnosis and immunotherapy.

9.
Adv Mater ; 35(22): e2208309, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36525617

RESUMEN

As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.


Asunto(s)
Péptidos , Proteínas , Péptidos/química
10.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012766

RESUMEN

High-density lipoprotein (HDL) is a mixture of complex particles mediating reverse cholesterol transport (RCT) and several cytoprotective activities. Despite its relevance for human health, many aspects of HDL-mediated lipid trafficking and cellular signaling remain elusive at the molecular level. During HDL's journey throughout the body, its functions are mediated through interactions with cell surface receptors on different cell types. To characterize and better understand the functional interplay between HDL particles and tissue, we analyzed the surfaceome-residing receptor neighborhoods with which HDL potentially interacts. We applied a combination of chemoproteomic technologies including automated cell surface capturing (auto-CSC) and HATRIC-based ligand-receptor capturing (HATRIC-LRC) on four different cellular model systems mimicking tissues relevant for RCT. The surfaceome analysis of EA.hy926, HEPG2, foam cells, and human aortic endothelial cells (HAECs) revealed the main currently known HDL receptor scavenger receptor B1 (SCRB1), as well as 155 shared cell surface receptors representing potential HDL interaction candidates. Since vascular endothelial growth factor A (VEGF-A) was recently found as a regulatory factor of transendothelial transport of HDL, we next analyzed the VEGF-modulated surfaceome of HAEC using the auto-CSC technology. VEGF-A treatment led to the remodeling of the surfaceome of HAEC cells, including the previously reported higher surfaceome abundance of SCRB1. In total, 165 additional receptors were found on HAEC upon VEGF-A treatment representing SCRB1 co-regulated receptors potentially involved in HDL function. Using the HATRIC-LRC technology on human endothelial cells, we specifically aimed for the identification of other bona fide (co-)receptors of HDL beyond SCRB1. HATRIC-LRC enabled, next to SCRB1, the identification of the receptor tyrosine-protein kinase Mer (MERTK). Through RNA interference, we revealed its contribution to endothelial HDL binding and uptake. Furthermore, subsequent proximity ligation assays (PLAs) demonstrated the spatial vicinity of MERTK and SCRB1 on the endothelial cell surface. The data shown provide direct evidence for a complex and dynamic HDL receptome and that receptor nanoscale organization may influence binding and uptake of HDL.


Asunto(s)
Lipoproteínas HDL , Factor A de Crecimiento Endotelial Vascular , Humanos , Ligandos , Lipoproteínas HDL/metabolismo , Receptores de Superficie Celular , Receptores Depuradores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tirosina Quinasa c-Mer
11.
Plant Biotechnol J ; 20(11): 2123-2134, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35842742

RESUMEN

Ligand-receptor pairs play important roles in cell-cell communication for multicellular organisms in response to environmental cues. Recently, the emergence of single-cell RNA-sequencing (scRNA-seq) provides unprecedented opportunities to investigate cellular communication based on ligand-receptor expression. However, so far, no reliable ligand-receptor interaction database is available for plant species. In this study, we developed PlantPhoneDB (https://jasonxu.shinyapps.io/PlantPhoneDB/), a pan-plant database comprising a large number of high-confidence ligand-receptor pairs manually curated from seven resources. Also, we developed a PlantPhoneDB R package, which not only provided optional four scoring approaches that calculate interaction scores of ligand-receptor pairs between cell types but also provided visualization functions to present analysis results. At the PlantPhoneDB web interface, the processed datasets and results can be searched, browsed, and downloaded. To uncover novel cell-cell communication events in plants, we applied the PlantPhoneDB R package on GSE121619 dataset to infer significant cell-cell interactions of heat-shocked root cells in Arabidopsis thaliana. As a result, the PlantPhoneDB predicted the actively communicating AT1G28290-AT2G14890 ligand-receptor pair in atrichoblast-cortex cell pair in Arabidopsis thaliana. Importantly, the downstream target genes of this ligand-receptor pair were significantly enriched in the ribosome pathway, which facilitated plants adapting to environmental changes. In conclusion, PlantPhoneDB provided researchers with integrated resources to infer cell-cell communication from scRNA-seq datasets.


Asunto(s)
Arabidopsis , Ligandos , Arabidopsis/genética , Arabidopsis/metabolismo , Comunicación Celular/genética , Plantas/metabolismo
13.
Front Immunol ; 13: 884561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651625

RESUMEN

Cancer immunotherapy targets the interplay between immune and cancer cells. In particular, interactions between cytotoxic T lymphocytes (CTLs) and cancer cells, such as PD-1 (PDCD1) binding PD-L1 (CD274), are crucial for cancer cell clearance. However, immune checkpoint inhibitors targeting these interactions are effective only in a subset of patients, requiring the identification of novel immunotherapy targets. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening in either cancer or immune cells has been employed to discover regulators of immune cell function. However, CRISPR screens in a single cell type complicate the identification of essential intercellular interactions. Further, pooled screening is associated with high noise levels. Herein, we propose intercellular CRISPR screens, a computational approach for the analysis of genome-wide CRISPR screens in every interacting cell type for the discovery of intercellular interactions as immunotherapeutic targets. We used two publicly available genome-wide CRISPR screening datasets obtained while triple-negative breast cancer (TNBC) cells and CTLs were interacting. We analyzed 4825 interactions between 1391 ligands and receptors on TNBC cells and CTLs to evaluate their effects on CTL function. Intercellular CRISPR screens discovered targets of approved drugs, a few of which were not identifiable in single datasets. To evaluate the method's performance, we used data for cytokines and costimulatory molecules as they constitute the majority of immunotherapeutic targets. Combining both CRISPR datasets improved the recall of discovering these genes relative to using single CRISPR datasets over two-fold. Our results indicate that intercellular CRISPR screens can suggest novel immunotherapy targets that are not obtained through individual CRISPR screens. The pipeline can be extended to other cancer and immune cell types to discover important intercellular interactions as potential immunotherapeutic targets.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias de la Mama Triple Negativas , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Inmunoterapia , Linfocitos T Citotóxicos , Neoplasias de la Mama Triple Negativas/genética
14.
Front Public Health ; 10: 900853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769782

RESUMEN

Pancreatic cancer is one of the most challenging cancer types in clinical treatment worldwide. This study aimed to understand the tumorigenesis mechanism and explore potential therapeutic targets for patients with pancreatic cancer. Single-cell data and expression profiles of pancreatic cancer samples and normal tissues from multiple databases were included. Comprehensive bioinformatics analyses were applied to clarify tumor microenvironment and identify key genes involved in cancer development. Immense difference of cell types was shown between tumor and normal samples. Four cell types (B cell_1, B cell_2, cancer cell_3, and CD1C+_B dendritic cell_3) were screened to be significantly associated with prognosis. Three ligand-receptor pairs, including CD74-MIF, CD74-COPA, and CD74-APP, greatly contributed to tumorigenesis. High expression of BUB1 (BUB1 Mitotic Checkpoint Serine/Threonine Kinase) was closely correlated with worse prognosis. CD1C+_B dendritic cell_3 played a key role in tumorigenesis and cancer progression possibly through CD74-MIF. BUB1 can serve as a prognostic biomarker and a therapeutic target for patients with pancreatic cancer. The study provided a novel insight into studying the molecular mechanism of pancreatic cancer development and proposed a potential strategy for exploiting new drugs.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinasas , Carcinogénesis , Humanos , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Dev Cell ; 57(13): 1615-1629.e3, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35709764

RESUMEN

Ligand-receptor interactions guide axon navigation and dendrite arborization. Mechanical forces also influence guidance choices. However, the nature of such mechanical stimulations, the mechanosensor identity, and how they interact with guidance receptors are unknown. Here, we demonstrate that mechanosensitive DEG/ENaC channels are required for dendritic arbor morphogenesis in Caenorhabditis elegans. Inhibition of DEG/ENaC channels causes reduced dendritic outgrowth and branching in vivo, a phenotype that is alleviated by overexpression of the mechanosensitive channels PEZO-1/Piezo or YVC1/TrpY1. DEG/ENaCs trigger local Ca2+ transients in growing dendritic filopodia via activation of L-type voltage-gated Ca2+ channels. Anchoring of filopodia by dendrite ligand-receptor complexes is required for the mechanical activation of DEG/ENaC channels. Therefore, mechanosensitive channels serve as a checkpoint for appropriate chemoaffinity by activating Ca2+ transients required for neurite growth.


Asunto(s)
Caenorhabditis elegans , Neuritas , Animales , Axones , Dendritas/fisiología , Ligandos , Morfogénesis
16.
Cell Syst ; 13(5): 388-407.e10, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35421361

RESUMEN

Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression. Ligands could be classified into equivalence groups based on their profile of positive and negative synergies with other ligands. These groups varied with receptor expression, explaining how ligands can functionally replace each other in one context but not another. Context-dependent combinatorial interactions could be explained by a biochemical model based on the competitive formation of alternative signaling complexes with distinct activities. Together, these results provide insights into the roles of BMP combinations in developmental and therapeutic contexts and establish a framework for analyzing other combinatorial, context-dependent signaling systems.


Asunto(s)
Proteínas Morfogenéticas Óseas , Transducción de Señal , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Ligandos , Lógica
17.
Cell Syst ; 13(5): 408-425.e12, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35421362

RESUMEN

In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.


Asunto(s)
Proteínas Morfogenéticas Óseas , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Ligandos
18.
J Cell Commun Signal ; 16(4): 601-608, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35174439

RESUMEN

Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.

19.
Trends Parasitol ; 38(4): 302-315, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34991983

RESUMEN

A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.


Asunto(s)
Malaria , Parásitos , Animales , Fenómenos Biomecánicos , Eritrocitos/parasitología , Humanos , Ligandos , Malaria/parasitología , Merozoítos/metabolismo , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
20.
Food Chem ; 380: 132175, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35086010

RESUMEN

Dry-cured Spanish mackerel (DSM; Scomberomorus niphonius) is a popularity worldwide dry-cured marine fish product due to its salty and umami flavor. Umami peptides from eight commercial DSMs were identified and compared, and their molecular mechanisms were evaluated via molecular simulation. The results showed that the sequence of peptides varied in different DSMs, wherein only ten sequences were repeated across multiple samples and the remaining 19 were detected in only one sample. The sensory characteristics of eight repeated peptides were evaluated, and four were found to exhibit umami taste and umami-enhancing effects, including Arg-Asp, Asp-Gly-Val, Asp-Arg, and Asp-Lys. They all had a strong affinity for umami receptors, and several amino acid residues of the receptors were mobilized as binding sites to form hydrogen bonds and hydrophobic bonds in ligand-receptor interactions. These results indicated that DSM was rich in umami and umami-enhancing peptides, but their sequence were different in different DSMs.


Asunto(s)
Péptidos , Perciformes , Animales , Sitios de Unión , Enlace de Hidrógeno , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA