Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.227
Filtrar
1.
J Environ Sci (China) ; 148: 650-664, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095197

RESUMEN

China is the most important steel producer in the world, and its steel industry is one of the most carbon-intensive industries in China. Consequently, research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals. We constructed a carbon dioxide (CO2) emission model for China's iron and steel industry from a life cycle perspective, conducted an empirical analysis based on data from 2019, and calculated the CO2 emissions of the industry throughout its life cycle. Key emission reduction factors were identified using sensitivity analysis. The results demonstrated that the CO2 emission intensity of the steel industry was 2.33 ton CO2/ton, and the production and manufacturing stages were the main sources of CO2 emissions, accounting for 89.84% of the total steel life-cycle emissions. Notably, fossil fuel combustion had the highest sensitivity to steel CO2 emissions, with a sensitivity coefficient of 0.68, reducing the amount of fossil fuel combustion by 20% and carbon emissions by 13.60%. The sensitivities of power structure optimization and scrap consumption were similar, while that of the transportation structure adjustment was the lowest, with a sensitivity coefficient of less than 0.1. Given the current strategic goals of peak carbon and carbon neutrality, it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies, increase the ratio of scrap steel to steelmaking, and build a new power system.


Asunto(s)
Dióxido de Carbono , Huella de Carbono , Acero , China , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Metalurgia , Monitoreo del Ambiente , Industrias , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/prevención & control
2.
Water Res X ; 25: 100255, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39286461

RESUMEN

Climate change is driving global endeavours to achieve carbon neutrality and renewable energy expansion. Sludge, a nutrient-rich waste, holds energy potential yet poses environmental challenges that need proper management. We conducted a comprehensive life cycle assessment to evaluate the energy balance and environmental footprint of the most commonly used sludge management scenarios in BRICS countries, namely Brazil, Russia, India, China, and South Africa. Technologies such as incineration and anaerobic digestion with energy recovery units (i.e., cogeneration unit) maximize energy balance and minimize the environmental footprint, with incineration showing a superior performance. Shifting sludge management scenarios from the worst to the best can boost energy production by 1.4-98.4 times and cut the environmental footprint by 1.5-21.4 times. In 2050, these improvements could lead to a 98-fold boost in energy generation and a 25-fold drop in carbon emissions, according to the Announced Pledges Scenarios. Optimizing parameters such as volatile solids and anaerobic digestion efficiency further boosts energy output and minimizes the environmental footprint. This study offers robust evidence to support sustainable sludge management and thus promote energy recovery and carbon neutrality goals, guide technological transitions, and inform policymaking for sustainable development.

3.
Curr Res Food Sci ; 9: 100818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290652

RESUMEN

Consumer buying behavior can be defined as all the different steps that consumers follow before purchasing a good or service. Web browser research, involvement in online networking discussions, and a range of other activities might be a part of this process. Despite the negative effects of its production chain on the environment, and on the socio-economical condition of local farmers, chocolate products are among the most distributed food and beverage items in the world. In this review, the consumer responsibility for sustainable cocoa production is described. This study determines the consumer opinions and attitudes on the different operations pursued in the production chain of chocolate, from the collection of cocoa beans to their processing into different final products. For this, data on life cycle assessment from some studies was gathered to identify and investigate links between the production chain of different types of chocolate (dark, white, milk) and its impact on natural resources so that the sensitivity of consumers to purchase more sustainable products can be evaluated. This approach revealed that consumers will not only purchase chocolate because of its good quality or health benefits, but they also consider it the most sustainable product.

4.
ACS Nano ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291328

RESUMEN

Sluggish interfacial water dissociation and the O2 evolution reaction (OER) kinetics are the main obstacles that limit the photocatalytic overall water-splitting performance. A molten salt modulation of potassium-nitrogen-carbon is herein demonstrated as the formation of highly crystalline potassium-doped poly(triazine imide) (KPTI). The in situ X-ray diffraction patterns and theoretical calculation show that the KCl melt can significantly reduce the free energy for the polycondensation of triazine building blocks owing to the formation of a kinetically stable KPTI. Benefiting from the presence of potassium-carbon-nitrogen moiety, the catalyst not only weakens the excitonic confinement to improve the separation efficiency of photogenerated charge carriers but also enhances the stability of carbon sites by suppressing the undesired C═O formation. Moreover, KPTI accelerates water dissociation by forming interfacial K·H2O clusters with an ordered structure, which supplies sufficient protons for the H2 evolution reaction and lowers the energy barrier to enhance the kinetics of OER. Therefore, a stable photocatalytic overall water-splitting performance can be achieved over KPTI with a stoichiometric generation of products (H2 and O2). Life cycle assessment shows that a carbon-neutral scenario can be achieved on KPTI production in the near term with an increase in green power in the electricity grid.

5.
J Helminthol ; 98: e52, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291546

RESUMEN

Trematodes and their snail hosts have developed intimate parasite-host associations, with snails supporting a diverse and often species-specific trematode fauna. In the faucet snail, Bithynia tentaculata (Caenogastropoda, Littorinimorpha), a unique trematode fauna has been recorded recently. However, knowledge of the exact species identity, phylogenetic relationships, and geographical distribution remains limited as many of the species belong to groups with unclear or controversial taxonomical assignment. To contribute to our knowledge of the trematodes, we investigated the trematode fauna of B. tentaculata by examining a total of 556 snails from lakes in County Galway, Ireland. Using an integrative taxonomic approach including DNA sequence data analyses (28S rRNA gene, ITS1-5.8S-ITS2, ITS2, cox1, nad1) and morphological tools (taxonomical drawings and measurements), we identified nine trematode species of seven families, with seven species occurring as cercariae (Cyathocotyle prussica, Lecithodendrium linstowi, Lecithodendrium sp., Asymphylodora progenetica, Sphaerostoma bramae, Metorchis xanthosomus, and Notocotylus sp.) and three species occurring as metacercariae (A. progenetica, Parasymphylodora parasquamosa, and Sphaeridiotrema sp.). Except for S. bramae, all are new species records for Ireland and provide the most western distribution of these trematodes in Europe. The trematode species recorded are known to use a wide range of definitive hosts and have a wide geographical distribution; among them are species members of genera that are zoonotic (Metorchis) and pathogenic to wildlife (Cyathocotyle, Sphaeridiotrema, and Notocotylus). There remains an ongoing need for precise identification of the trematode species to ensure that wider ecological contexts are correctly understood and biodiversity and disease threats can be accurately evaluated.


Asunto(s)
Filogenia , Caracoles , Trematodos , Animales , Trematodos/clasificación , Trematodos/genética , Trematodos/aislamiento & purificación , Trematodos/anatomía & histología , Irlanda , Caracoles/parasitología , ARN Ribosómico 28S/genética , Biodiversidad , ADN de Helmintos/genética , ADN Espaciador Ribosómico/genética , Lagos/parasitología , Análisis de Secuencia de ADN , ADN Ribosómico/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-39292304

RESUMEN

Building carbon emissions (CE) have become the focus of the current topic, but there is still no mature typical building life cycle theory method from the perspective of building materials, and the research on the relationship between building durability and building life cycle is still insufficient. To this end, this study established a detailed calculation method for building carbon emissions (CE) and divided the building life cycle (BLC) into three stages: manufacturing, use, and demolition according to the result analysis. In addition, a durability improvement and carbon reduction scheme of "partition, resistance, and repair" is proposed, and the carbon emission reduction index of effectiveness index is proposed. The proposed method is applied to the case of residential buildings in Northwest China. The main conclusions are as follows: the CE of residential buildings are more dependent on the use stage. If the centralized heating system is adopted, the CE in the operation stage account for 80-90%. If the air conditioning refrigeration and heating system is adopted, the CE in the operation stage account for about 50%. Using the method of improving the durability of buildings to extend the service life of buildings is very significant for building carbon reduction (RC); the effectiveness index proposed in this paper includes key indicators such as total CE, service life, and building area. Compared with the traditional index, the effectiveness index is more accurate and comprehensive. CR is the focus of green building, but the impact of economy needs to be considered in practical engineering. In the future research, durability, CE, and economy need to be considered comprehensively for careful study.

8.
Sci Total Environ ; 954: 176101, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265687

RESUMEN

The industrial sector is a major source of greenhouse gas (GHG) emissions due to process emissions and a heavy reliance on fossil fuels for heat and power. Methods exist to produce low carbon versions of products made in industrial clusters, including hydrogen, carbon capture and storage and alternative production methods, but these could increase burdens to other areas of the environment, such as resource depletion and water scarcity. This study compares different decarbonisation pathways for ammonia, cement, methanol and steel produced in the UK, to determine whether decarbonising could result in unintended environmental consequences. To determine this, life cycle assessment was applied to compare 267 different pathways to the conventional (fossil fuel) baseline. We find that most pathways lead to GHG emission reductions (43 to 78 % on average) but would increase impacts to other areas of the environment, including metal resources and ecotoxicity (8 % to 5-fold and 19 % to 24-fold, on average respectively). This study is the first to assess decarbonisation pathways for unintended environmental impacts and is of interest to industry, policy makers and anyone modelling industrial lifecycle emissions.

9.
Materials (Basel) ; 17(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274748

RESUMEN

The development of new building elements, such as concrete and mortar with sustainable materials, which produce a lower carbon footprint, is an achievable milestone in the short term. The need to reduce the environmental impact of the production of cement-based materials is of vital importance. This work focuses on the evaluation of the life-cycle assessment, production costs, mechanical performance, and durability of three mortars and three concrete mixtures in which mixed recycled aggregates (MRAs) and biomass bottom ash from olive waste (oBBA) were included to replace cement and aggregates. Powdered MRA and oBBA were also applied as complementary cementitious materials with a reduced environmental footprint. Chemical and physical tests were performed on the materials, and mechanical performance properties, life-cycle assessment, and life-cycle cost analysis were applied to demonstrate the technical and environmental benefits of using these materials in mortar and concrete mixtures. This research showed that the application of MRA and oBBA produced a small reduction in mechanical strength but a significant benefit in terms of life-cycle population and environmental costs. The results demonstrated that finding long-term mechanical strength decreases between 2.7% and 14% for mortar mixes and between 1.7% and 10.4% for concrete mixes. Although there were small reductions in mechanical performance, the savings in environmental and monetary terms make the feasibility of manufacturing these cement-based materials feasible and interesting for both society and the business world. CO2 emissions are reduced by 25% for mortar mixes and 12% for concrete mixes with recycled materials, and it is possible to reduce the cost per cubic meter of mortar production by 20%, and the savings in the cost of production of a cubic meter of concrete is 13.8%.

10.
Water Res ; 266: 122430, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39278119

RESUMEN

As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39279024

RESUMEN

Developing countries primarily rely on fossil-based energy sources to meet their energy demands. The use of fossil fuels has several adverse environmental repercussions that damage the biosphere both directly and indirectly. Among fossil fuels, coal brings about the heaviest environmental externalities, yet its abundance makes its use widespread, particular in countries having significant power generation deficits, such as Pakistan. This study presents an environmental, technological, and economic analysis of a supercritical coal-based power unit located in Pakistan and used for electricity generation. For environmental assessment, the CML-1A baseline method in OpenLCA software was used, and eight midpoint impact indicators were selected. The functional unit chosen was 1 MWh of generated electricity. The results indicated that the category of ozone layer depletion has the least impact, whereas global warming potential has the highest impact score. Except for photochemical oxidation and human toxicity, the plant operational stage dominated most of the selected impact categories. The current paper also reveals that the removal efficiency of CO2 and other pollutants is higher in supercritical compared to subcritical plants. Moreover, the economic feasibility of supercritical plant is compared with chemical looping combustion (CLC)-based supercritical coal-fired power plant, and results shows that CLC-based coal-fired power plant is a more competitive and environmentally friendly option. The utilization of a scientific cleaner energy-management system in real-time, as exemplified in this study, may facilitate the development of a optimal policy framework that encourages for the adoption of cleaner coal power generation in developing countries, ultimately resulting in improved energy sustainability. Furthermore, this paper also presents some policy implications which could be helpful for policymakers, researchers, and industrialists to improve the sustainability of energy in emerging economies.

12.
J Environ Manage ; 369: 122363, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232323

RESUMEN

Green roof systems have been developed to improve the environmental, economic, and social aspects of sustainability. Selecting the appropriate version of the green roof composition plays an important role in the life cycle assessment of a green roof. In this study, 10 compositions of an intensive green roof for moderate zone and 4 green roof compositions for different climatic conditions were designed and comprehensively assessed in terms of their environmental and economic impacts within the "Cradle-to-Cradle" system boundary. The assessment was carried out over a 50-year period for a moderate climate zone. The results showed that asphalt strips and concrete slab produced the highest total emissions. It was found that most greenhouse gases emissions were released in the operational energy consumption phase and in the production phase. The energy consumption phase (48.78%) for automatic irrigation and maintenance caused the highest Global Warming Potential (GWP) value (758.39 kg CO2e) in the worst variant, which also caused the highest life cycle cost (878.47€). On the contrary, in the best variant, planting more vegetation and lower maintenance and irrigation requirements led to a reduction in GWP (445.0 kg CO2e), but in terms of cost (506.6€) this composition didn't represent the best variant. The Global Warming Potential Biogenic (GWP-bio) compared to the Global Warming Potential Total (GWP-total) represents a proportion ranging from 0.8% to 78% depending on the proposed vegetation. Overall higher biogenic carbon values (up to 1525 kg CO2e) were observed for the proposed tall vegetation of Magnolia, Red Mulberry, Hawthorne, Cherry, and Crab-apple Tree. Based on the results of the multicriteria analysis, which included core environmental & economic parameters, biogenic carbon emission levels, the outcome of this paper proposed optimal green roof composition. Optimal intensive green roof composition was subjected to a sensitivity analysis to determine the impact of changing climatic conditions on CO2 emissions and life cycle costs. The results of the sensitivity analysis show that the optimal variant of the green roof can be implemented in the cold and subtropical zone with regard to CO2 emissions, but not with regard to life cycle costs.


Asunto(s)
Calentamiento Global , Conservación de los Recursos Naturales , Gases de Efecto Invernadero/análisis , Materiales de Construcción , Hidrocarburos
13.
Environ Sci Technol ; 58(37): 16386-16398, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236260

RESUMEN

Plastic additive-related chemicals, particularly in polyvinyl chloride (PVC) plastics, have become a key issue in plastic pollution. Although addressing plastic pollution through the life-cycle approach is crucial, the environmental impacts of typical plastic additive-related chemicals in PVC plastics during the cradle-to-gate stage remain unexplored. Consequently, managing the life-cycle environmental impacts of these additives remains challenging. Herein, the environmental impacts of 23 typical plastic additive-related chemicals and six PVC plastic products were evaluated throughout the cradle-to-gate life-cycle stage using a life cycle assessment-material flow analysis (LCA-MFA) coupled model. The results indicate that plastic additives significantly contribute to the environmental impacts of PVC plastic products across various end point indicators, ranging from 8.7 to 40.6%. Additionally, scenario analysis (SA) reveals that conventional strategies for addressing plastic pollution may not be highly effective in mitigating the environmental impacts associated with plastic additives. Specifically, compared to primary polymers, these additives exhibit 4 to 13% lower mitigation potential under the same policy scenarios. However, technical adjustment strategies targeting additives show a mitigation potential of 12 to 39%, suggesting that guiding the plastic additive industry toward green transformation is a key strategy for reducing environmental impacts.


Asunto(s)
Plásticos , Cloruro de Polivinilo , Cloruro de Polivinilo/química , Ambiente , Contaminación Ambiental
14.
Front Microbiol ; 15: 1457582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252835

RESUMEN

The herpesvirus UL51 protein is a multifunctional tegument protein involved in the regulation of multiple aspects of the viral life cycle. This article reviews the biological characteristics of the UL51 protein and its functions in herpesviruses, including participating in the maintenance of the viral assembly complex (cVAC) during viral assembly, affecting the production of mature viral particles and promoting primary and secondary envelopment, as well as its positive impact on viral cell-to-cell spread (CCS) through interactions with multiple viral proteins and its key role in the proliferation and pathogenicity of the virus in the later stage of infection. This paper discusses how the UL51 protein participates in the life cycle of herpesviruses and provides new ideas for further research on UL51 protein function.

15.
Poult Sci ; 103(12): 104246, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39260244

RESUMEN

Coccidiosis is one of the most significant diseases affecting the poultry industry, with recent estimates indicating that it causes annual losses exceeding £10 billion globally. Increasing concerns over drug residues and resistance have elevated the importance of safe and effective vaccines as the primary method for controlling coccidiosis and other animal diseases. However, current commercial live vaccines for coccidiosis can negatively impact the feed conversion rates of young broilers and induce subclinical symptoms of coccidiosis, limiting their widespread adoption. Eimeria species, the causative agents of coccidiosis, exhibit unique biological characteristics. Their life cycle involves 2 or more generations of schizogony and 1 generation of gametogony within the host, followed by sporogony in a suitable external environment. Sporogony is crucial for Eimeria oocysts to become infectious and propagate within the host. Focusing on the sporogony process of Eimeria presents a promising approach to overcoming technical challenges in the efficient control of coccidiosis, addressing the urgent need for sustainable and healthy farming practices. This paper systematically reviews existing control strategies for coccidiosis, identifies current challenges, and emphasizes the research progress and future directions in developing control agents targeting sporogony. The goal is to provide guidance for the formulation of scientific prevention and control measures for coccidiosis.

16.
Waste Manag ; 189: 314-324, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226845

RESUMEN

This study presents a comprehensive analysis of greenhouse gas (GHG) emissions associated with waste transfer and transport, incorporating derived leachate treatment-a factor often overlooked in existing research. Employing an integration model of life cycle assessment and a vehicle routing problem (VRP) methods, we evaluated the GHG reduction potential of waste transfer and transport system. Two Chinese counties with different topographies and demographics were selected, yielding 80 scenarios that factored in waste source separation as well as vehicle capacity, energy sources, and routes. The functional unit (FU) is transferring and transporting 1 tonne waste and treating derived leachate. The GHG emissions varied from 12 to 39 kg CO2 equivalent per FU. Waste source separation emerged as the most impactful mitigation strategy, not only for the studied system but for an integrated waste management system. Followings are the use of larger capacity vehicles and electrification of the vehicles. These insights are instrumental for policymakers and stakeholders in optimizing waste management systems to reduce GHG emissions.


Asunto(s)
Gases de Efecto Invernadero , Administración de Residuos , Gases de Efecto Invernadero/análisis , Administración de Residuos/métodos , China , Eliminación de Residuos/métodos , Transportes , Modelos Teóricos , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis
17.
Waste Manag ; 189: 410-420, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241559

RESUMEN

The Water-Energy-Food (WEF) nexus approach is increasingly being used for supporting a transition to sustainable development, with initiatives involving the concept of circular economy (CE). In the agricultural sector in particular, assessing this nexus is crucial to ensure food security, control the consumption of key resources such as water and energy, as well as measure atmospheric emissions linked to climate change. This manuscript aims to propose a novel approach by coupling the WEF nexus with a circularity indicator, seeking to capture in a single index (the WEF+CEi) both performances in a sample of companies. The novel approach is applied to 30 dairy farms located in Galicia (NW Spain) to benchmark them in a holistic manner. To do this, the WEF nexus of each farm was represented through the following indicators: carbon footprint, water footprint, energy footprint, and food productivity. In addition, the percentage of circularity for each farm, and for the agro-industrial cooperative was measured thanks to the application of a circularity tool in percentage terms. Finally, the WEF+CEi indicator was obtained using the multicriteria mathematical tool of Data Envelopment Analysis (DEA). The results show that without considering the agro-industrial cooperative, the system is 51 % circular. On the other hand, considering the farms and the cooperative, the system goes up to 80 % of circularity. Finally, the proposed approach can support decision-making and provide insights for producers and stakeholders in the area.


Asunto(s)
Benchmarking , Industria Lechera , Industria Lechera/métodos , España , Benchmarking/métodos , Granjas , Huella de Carbono , Agricultura/métodos
18.
Waste Manag ; 189: 389-400, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241557

RESUMEN

With increasing textile consumption and limited sorting and recycling capacities, the EU faces major challenges in terms of managing its textile waste. This study investigates the environmental and socio-economic impacts of explorative policy scenarios for a more sustainable textile waste management system in Europe. These scenarios differ substantially in the amounts of textile waste generated and separately collected, closed-loop recycling capacities and textile waste exports. Our results show that sustainable textile waste management remains highly relevant for the sector. Still, without addressing in parallel prevention of textile waste generation via production and consumption patterns, a climate-neutral and circular textiles sector will be hard to achieve. Interventions in the waste management of textiles could reduce global warming impacts by up to 22.3 Mt CO2 per year, which translates to an 18% sector-wide impact by 2035. Depending on the intervention(s), the estimated required investment at present amounts to between 7 and 33 billion EUR. The study provides a valuable starting point for evidence-based decisions on future textile policymaking in Europe.


Asunto(s)
Reciclaje , Industria Textil , Textiles , Administración de Residuos , Administración de Residuos/métodos , Reciclaje/métodos , Europa (Continente) , Residuos Industriales
19.
Heliyon ; 10(16): e36547, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39258196

RESUMEN

Single treatment of metallised food packaging plastics waste (MFPW) has shown disappointing results with recycling rate <20 % due to its complex structure consisting of 10 % aluminium (Al) and 90 % mixed plastic films made of PE, PP, PS, PET, etc. Besides, it is generating many emissions and residues that must be landfilled making it difficult to integrate them into the circular economy. Therefore, a multi-stage recycling (MSR) approach has recently been developed using several sequential mechanical, thermal and chemical processes to recover energy and Al from MFPW with additional revenue for recycling plant operators. The thermal treatment helps to decompose the plastic fraction into wax or oil, gaseous, and solid residue (SR) composed of Al and coal, while the mechanical process can be used as a pre-treatment of MFPW feedstock and SR. Finally, the chemical treatment (leaching and functionalization) can be used to extract Al from SR and to refine coal into carbon microparticles (CPs), respectively. In order to investigate the environmental performance of the proposed MSR system, this research was developed. The investigation was performed using SimaPro life cycle analysis (LCA) tool according to ISO 14040/44 Standards and the impact assessment method is ReCiPe 2016. Five different scenarios were proposed in the constructed LCA layout, namely, conversion of MFPW to a) wax and gas (pyrolysis), b) wax, gas, and aluminium chloride (AlCl3) (pyrolysis and leaching), c) wax, gas, AlCl3, and CPs (pyrolysis, leaching, and functionalization), and d) oil, gas, AlCl3, and CPs (catalytic pyrolysis, leaching, and functionalization). Besides, the oil produced from catalytic pyrolysis is used for generation of electricity (scenario e). The results showed that wax and gas recovery scenario (a) has better environmental potential and environmental benefits compared to incineration practice. The results did not change much after extraction of Al and CPs (scenario b, c), with a few increasing by 2-4% in the total score. While a lot of environmental burdens from upgrading and utilization (Scenario d, e) were recorded, reaching 79 % due to the huge amount of the catalyst was used. Thus, MSR systems have bigger environmental benefits, however, the chemical and catalytic processes still need to be further improved to reduce the effect of terrestrial acidification.

20.
Cell Rep Phys Sci ; 5(8): 101930, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39220756

RESUMEN

Bioelectronics provide efficient information exchange between living systems and man-made devices, acting as a vital bridge in merging the domains of biology and technology. Using functional fibers as building blocks, bioelectronics could be hierarchically assembled with vast design possibilities across different scales, enhancing their application-specific biointegration, ergonomics, and sustainability. In this work, the authors review recent developments in bioelectronic fiber elements by reflecting on their fabrication approaches and key performance indicators, including the life cycle sustainability, environmental electromechanical performance, and functional adaptabilities. By delving into the challenges associated with physical deployment and exploring innovative design strategies for adaptability, we propose avenues for future development of bioelectronics via fiber building blocks, boosting the potential of "Fiber of Things" for market-ready bioelectronic products with minimized environmental impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA