Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36772511

RESUMEN

Lensless holographic microscopy (LHM) comes out as a promising label-free technique since it supplies high-quality imaging and adaptive magnification in a lens-free, compact and cost-effective way. Compact sizes and reduced prices of LHMs make them a perfect instrument for point-of-care diagnosis and increase their usability in limited-resource laboratories, remote areas, and poor countries. LHM can provide excellent intensity and phase imaging when the twin image is removed. In that sense, multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy appears as a single-shot and phase-retrieved imaging technique employing multiple illumination/detection channels and a fast-iterative phase-retrieval algorithm. In this contribution, we review MISHELF microscopy through the description of the principles, the analysis of the performance, the presentation of the microscope prototypes and the inclusion of the main biomedical applications reported so far.


Asunto(s)
Holografía , Lentes , Microscopía/métodos , Iluminación , Holografía/métodos , Algoritmos
2.
Biosens Bioelectron ; 224: 115049, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623342

RESUMEN

Imaging a large number of bio-specimens at high speed is essential for many biomedical applications. The common strategy is to place specimens at different lateral positions and image them sequentially. Here we report a new on-chip imaging strategy, termed depth-multiplexed ptychographic microscopy (DPM), for parallel imaging and sensing at high speed. Different from the common strategy, DPM stacks multiple specimens in the axial direction and images the entire z-stack all at once. In our prototype platform, we modify a low-cost car mirror for programmable steering of the incident laser beam. A blood-coated image sensor is then placed underneath the stacked sample for acquiring the resulting diffraction patterns. With the captured images, we perform blind recovery of the incident beam angle and model different layers of the stacked sample as different coded surfaces for object reconstruction. For in vitro experiment, we demonstrate time-lapse cell culture monitoring by imaging 3 stacked microfluidic channels on the coded sensor. For high-throughput cytometric analysis, we image 5 stacked brain sections with a 205-mm2 field of view in ∼50 s. Cytometric analysis is also performed to quantify the cellular proliferation biomarkers on the slides. The DPM approach adds a new degree of freedom for data multiplexing in microscopy, enabling parallel imaging of multiple specimens using a single detector. The demonstrated 6-mm depth of field is among the longest ones in microscopy imaging. The novel depth-multiplexed configuration also complements the miniaturization provided by microfluidics devices, offering a solution for on-chip sensing and imaging with efficient sample handling.


Asunto(s)
Técnicas Biosensibles , Microscopía , Dispositivos Laboratorio en un Chip , Luz , Microfluídica
3.
ACS Sens ; 7(4): 1058-1067, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35393855

RESUMEN

The Blu-ray drive is an engineering masterpiece that integrates disc rotation, pickup head translation, and three lasers in a compact and portable format. Here, we integrate a blood-coated image sensor with a modified Blu-ray drive for high-throughput cytometric analysis of various biospecimens. In this device, samples are mounted on the rotating Blu-ray disc and illuminated by the built-in lasers from the pickup head. The resulting coherent diffraction patterns are then recorded by the blood-coated image sensor. The rich spatial features of the blood-cell monolayer help down-modulate the object information for sensor detection, thus forming a high-resolution computational biolens with a theoretically unlimited field of view. With the acquired data, we develop a lensless coherent diffraction imaging modality termed rotational ptychography for image reconstruction. We show that our device can resolve the 435 nm line width on the resolution target and has a field of view only limited by the size of the Blu-ray disc. To demonstrate its applications, we perform high-throughput urinalysis by locating disease-related calcium oxalate crystals over the entire microscope slide. We also quantify different types of cells on a blood smear with an acquisition speed of ∼10,000 cells per second. For in vitro experiments, we monitor live bacterial cultures over the entire Petri dish with single-cell resolution. Using biological cells as a computational lens could enable new intriguing imaging devices for point-of-care diagnostics. Modifying a Blu-ray drive with the blood-coated sensor further allows the spread of high-throughput optical microscopy from well-equipped laboratories to citizen scientists worldwide.


Asunto(s)
Rayos Láser , Microscopía
4.
Biosens Bioelectron ; 196: 113699, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34653716

RESUMEN

Traditional microbial detection methods often rely on the overall property of microbial cultures and cannot resolve individual growth event at high spatiotemporal resolution. As a result, they require bacteria to grow to confluence and then interpret the results. Here, we demonstrate the application of an integrated ptychographic sensor for lensless cytometric analysis of microbial cultures over a large scale and with high spatiotemporal resolution. The reported device can be placed within a regular incubator or used as a standalone incubating unit for long-term microbial monitoring. For longitudinal study where massive data are acquired at sequential time points, we report a new temporal-similarity constraint to increase the temporal resolution of ptychographic reconstruction by 7-fold. With this strategy, the reported device achieves a centimeter-scale field of view, a half-pitch spatial resolution of 488 nm, and a temporal resolution of 15-s intervals. For the first time, we report the direct observation of bacterial growth in a 15-s interval by tracking the phase wraps of the recovered images, with high phase sensitivity like that in interferometric measurements. We also characterize cell growth via longitudinal dry mass measurement and perform rapid bacterial detection at low concentrations. For drug-screening application, we demonstrate proof-of-concept antibiotic susceptibility testing and perform single-cell analysis of antibiotic-induced filamentation. The combination of high phase sensitivity, high spatiotemporal resolution, and large field of view is unique among existing microscopy techniques. As a quantitative and miniaturized platform, it can improve studies with microorganisms and other biospecimens at resource-limited settings.


Asunto(s)
Técnicas Biosensibles , Estudios Longitudinales , Microscopía
5.
J Biophotonics ; 15(4): e202100310, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936215

RESUMEN

Identification of cell death mechanisms, particularly distinguishing between apoptotic versus nonapoptotic pathways, is of paramount importance for a wide range of applications related to cell signaling, interaction with pathogens, therapeutic processes, drug discovery, drug resistance, and even pathogenesis of diseases like cancers and neurogenerative disease among others. Here, we present a novel high-throughput method of identifying apoptotic versus necrotic versus other nonapoptotic cell death processes, based on lensless digital holography. This method relies on identification of the temporal changes in the morphological features of mammalian cells, which are unique to each cell death processes. Different cell death processes were induced by known cytotoxic agents. A deep learning-based approach was used to automatically classify the cell death mechanism (apoptotic vs necrotic vs nonapoptotic) with more than 93% accuracy. This label free approach can provide a low cost (<$250) alternative to some of the currently available high content imaging-based screening tools.


Asunto(s)
Holografía , Neoplasias , Animales , Muerte Celular , Mamíferos , Microscopía , Necrosis , Neoplasias/tratamiento farmacológico
6.
ACS Photonics ; 7(11): 3023-3034, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34368395

RESUMEN

Polarized light microscopy provides high contrast to birefringent specimen and is widely used as a diagnostic tool in pathology. However, polarization microscopy systems typically operate by analyzing images collected from two or more light paths in different states of polarization, which lead to relatively complex optical designs, high system costs, or experienced technicians being required. Here, we present a deep learning-based holographic polarization microscope that is capable of obtaining quantitative birefringence retardance and orientation information of specimen from a phase-recovered hologram, while only requiring the addition of one polarizer/analyzer pair to an inline lensfree holographic imaging system. Using a deep neural network, the reconstructed holographic images from a single state of polarization can be transformed into images equivalent to those captured using a single-shot computational polarized light microscope (SCPLM). Our analysis shows that a trained deep neural network can extract the birefringence information using both the sample specific morphological features as well as the holographic amplitude and phase distribution. To demonstrate the efficacy of this method, we tested it by imaging various birefringent samples including, for example, monosodium urate and triamcinolone acetonide crystals. Our method achieves similar results to SCPLM both qualitatively and quantitatively, and due to its simpler optical design and significantly larger field-of-view this method has the potential to expand the access to polarization microscopy and its use for medical diagnosis in resource limited settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA